
Fabrication of cellulose based superhydrophobic microspheres for the production of magnetically actuatable smart liquid marbles
Abstract
Cellulose microspheres were fabricated on the basis of sol-gel transition using NaOH/urea/H2O as the solvent system. These microspheres had an average diameter of about 30 μm. Upon modification with Fe3O4 and poly (DOPAm-co-PFOEA), superhydrophobic magnetic cellulose microspheres were generated, which were analyzed by FTIR, TG, XRD, XPS and water contact angle tests. Magnetic cellulose microspheres contained approximately 15 wt% of Fe3O4. Poly(DOPAm-co-PFOEA)/Fe3O4/cellulose microspheres and had a low surface energy and a high water-repellency. These superhydrophobic microspheres were also converted into liquid marbles via an easily scalable process.
Full Text:
PDFReferences
Sun, T. L.; Qing, G. Y.; Su, B. L.; Jiang, L. Functional biointerface materials inspired from nature. Chemical Society Reviews 2011, 40: 2909-2921.
Ma, W.; Wu, H.; Higaki, Y.; Otsuka, H.; Takahara, A. A "non-sticky" superhydrophobic surface prepared by self-assembly of fluoroalkyl phosphonic acid on a hierarchically micro/nanostructured alumina gel film. Chemical Communications 2012, 48: 6824-6826.
Habibi, Y. Key advances in the chemical modification of nanocelluloses. Chemical Society Reviews 2014, 43: 1519-1542.
Klemm, D.; Heublein, B.; Fink, H.-P.; Bohn, A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angewandte Chemie International Edition 2005, 44: 3358-3393.
Lin, X.; Ma, W.; Wu, H.; Cao, S.; Huang, L.; Chen, L.; Takahara, A. Superhydrophobic magnetic poly(DOPAm-co-PFOEA)/Fe3O4/cellulose microspheres for stable liquid marbles. Chemical Communications 2016, 52: 1895-1898.
Luo, X.; Liu, S.; Zhou, J.; Zhang, L. In situ synthesis of Fe3O4/cellulose microspheres with magnetic-induced protein delivery. Journal of Materials Chemistry 2009, 19: 3538-3545.
Carlmark, A.; Malmstrom, E. Atom transfer radical polymerization from cellulose fibers at ambient temperature. Journal of the American Chemical Society 2002, 124: 900-901.
Fukuzumi, H.; Saito, T.; Wata, T.; Kumamoto, Y.; Isogai, A. Transparent and High Gas Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation. Biomacromolecules 2009, 10: 162-165.
Shang, S.-M.; Li, Z.; Xing, Y.; Xin, J. H.; Tao, X.-M. Preparation of durable hydrophobic cellulose fabric from water glass and mixed organosilanes. Applied Surface Science 2010, 257: 1495-1499.
Liu, F.; Ma, M.; Zang, D.; Gao, Z.; Wang, C. Fabrication of superhydrophobic/superoleophilic cotton for application in the field of water/oil separation. Carbohydrate Polymers 2014, 103: 480-487.
Zhang, W.; Xiao, H.; Qian, L. Enhanced water vapour barrier and grease resistance of paper bilayer-coated with chitosan and beeswax. Carbohydrate Polymers 2014, 101: 401-406.
Hufendiek, A.; Trouillet, V.; Meier, M. A. R.; Barner-Kowollik, C. Temperature Responsive Cellulose-graft-Copolymers via Cellulose Functionalization in an Ionic Liquid and RAFT Polymerization. Biomacromolecules 2014, 15: 2563-2572.
Liu, K.; Chen, L. H.; Huang, L. L.; Lai, Y. N. Evaluation of ethylenediamine-modified nanofibrillated cellulose/chitosan composites on adsorption of cationic and anionic dyes from aqueous solution. Carbohydrate Polymers 2016, 151: 1115-1119.
Xue, C.-H.; Zhang, L.; Wei, P.; Jia, S.-T. Fabrication of superhydrophobic cotton textiles with flame retardancy. Cellulose 2016, 23: 1471-1480.
Zhou, X.; Lin, X.; White, K. L.; Lin, S.; Wu, H.; Cao, S.; Huang, L.; Chen, L. Effect of the degree of substitution on the hydrophobicity of acetylated cellulose for production of liquid marbles. Cellulose 2016, 23: 811-821.
Zhang, H.; Li, Y. Q.; Xu, Y. G.; Lu, Z. X.; Chen, L. H.; Huang, L. L.; Fan, M. Z. Versatile fabrication of a superhydrophobic and ultralight cellulose-based aerogel for oil spillage clean-up. Physical Chemistry Chemical Physics 2016, 18: 28297-28306.
Cheng, D.; Yang, X.; He, Z.; Ni, Y. Potential of cellulose-based materials for the preparation of separator membranes for lithium-ion batteries (LIB). Journal of Bioresources and Bioproducts 2016, 1: 18-21.
Tian, H.; He, J. Cellulose as a Scaffold for Self-Assembly: From Basic Research to Real Applications. Langmuir 2016, 32: 12269-12282.
Huang, Y.; Yi, S.; Lv, Z.; Huang, C. Facile fabrication of superhydrophobic coatings based on two silica sols. Colloid and Polymer Science 2016, 294: 1503-1509.
Deng, S.; Huang, R.; Zhou, M.; Chen, F.; Fu, Q. Hydrophobic cellulose films with excellent strength and toughness via ball milling activated acylation of microfibrillated cellulose. Carbohydrate Polymers 2016, 154: 129-138.
Zhao, H.; Sha, L. Effect of surface modification of ammonium polyphosphate-diatomite composite filler on the flame retardancy and smoke suppression of cellulose paper. Journal of Bioresources and Bioproducts 2017, 2: 30-36.
Luo, X.; Zhang, L. Creation of regenerated cellulose microspheres with diameter ranging from micron to millimeter for chromatography applications. Journal of Chromatography A 2010, 1217: 5922-5929.
Zeng, H. B.; Hwang, D. S.; Israelachvili, J. N.; Waite, J. H. Strong reversible Fe3+-mediated bridging between dopa-containing protein films in water. Proceedings of the National Academy of Sciences of the United States of America 2010, 107: 12850-12853.
Xu, H.; Nishida, J.; Ma, W.; Wu, H.; Kobayashi, M.; Otsuka, H.; Takahara, A. Competition between Oxidation and Coordination in Cross-Linking of Polystyrene Copolymer Containing Catechol Groups. ACS Macro Letters 2012, 1: 457-460.
Xu, H.; Nishida, J.; Wu, H.; Higaki, Y.; Otsuka, H.; Ohta, N.; Takahara, A. Structural effects of catechol-containing polystyrene gels based on a dual cross-linking approach. Soft Matter 2013, 9: 1967-1974.
Aussillous, P.; Quere, D. Liquid marbles. Nature 2001, 411: 924-927.
Gao, L. C.; McCarthy T. J. Ionic liquid marbles. Langmuir 2007, 23: 10445-10447.
Matsukuma, D.; Watanabe, H.; Yamaguchi, H.; Takahara, A. Preparation of Low-Surface-Energy Poly[2-(perfluorooctyl)ethyl acrylate] Microparticles and Its Application to Liquid Marble Formation. Langmuir 2011, 27: 1269-1274.
Wu, H.; Watanabe, H.; Ma, W.; Fujimoto, A.; Higuchi, T.; Uesugi, K.; Takeuchi, A.; Suzuki, Y.; Jinnai, H.; Takahara, A. Robust Liquid Marbles Stabilized with Surface-Modified Halloysite Nanotubes. Langmuir 2013, 29: 14971-14975.
Chu, Y.; Wang, Z.; Pan, Q. Constructing Robust Liquid Marbles for Miniaturized Synthesis of Graphene/Ag Nanocomposite. Acs Applied Materials & Interfaces 2014, 6: 8378-8386.
Ogawa, S.; Watanabe, H.; Wang, L.; Jinnai, H.; McCarthy, T. J.; Takahara, A. Liquid Marbles Supported by Monodisperse Poly(methylsilsesquioxane) Particles. Langmuir 2014, 30: 9071-9075.
Serrano, M. C.; Nardecchia, S.; Gutierrez, M. C.; Ferrer, M. L.; del Monte F. Mammalian Cell Cryopreservation by Using Liquid Marbles. Acs Applied Materials & Interfaces 2015, 7: 3854-3860.
Wei, W.; Lu, R. J.; Ye, W. T.; Sun, J. H.; Zhu, Y.; Luo, J.; Liu, X. Y. Liquid Marbles Stabilized by Fluorine-Bearing Cyclomatrix Polyphosphazene Particles and Their Application as High-Efficiency Miniature Reactors. Langmuir 2016, 32: 1707-1715.
Kim, S. H.; Lee, S. Y.; Yang, S. M. Janus Microspheres for a Highly Flexible and Impregnable Water-Repelling Interface. Angewandte Chemie-International Edition 2010, 49: 2535-2538.
Zhao, Y.; Gu, H.; Xie, Z.; Shum, H. C.; Wang, B.; Gu, Z. Bioinspired Multifunctional Janus Particles for Droplet Manipulation. Journal of the American Chemical Society 2013, 135: 54-57.
Bormashenko, E. Liquid marbles: Properties and applications. Current Opinion in Colloid & Interface Science 2011, 16: 266-271.
McHale, G.; Newton, M. I. Liquid marbles: topical context within soft matter and recent progress. Soft Matter 2015, 11: 2530-2546.
Sheng, Y.; Sun, G.; Wu, J.; Ma, G.; Ngai, T. Silica-Based Liquid Marbles as Microreactors for the Silver Mirror Reaction. Angewandte Chemie International Edition 2015, 54: 7012-7017.
Ooi, C. H.; Nam-Trung, N. Manipulation of liquid marbles. Microfluidics and Nanofluidics 2015, 19: 483-495.
Sato, E.; Yuri, M.; Fujii, S.; Nishiyama, T.; Nakamura, Y.; Horibe H. Liquid marbles as a micro-reactor for efficient radical alternating copolymerization of diene monomer and oxygen. Chemical Communications 2015, 51: 17241-17244.
Shailendar, S.; Sundaram, M. M. A Feasibility Study of Localized Electrochemical Deposition Using Liquid Marbles. Materials and Manufacturing Processes 2016, 31: 81-86.
Matsukuma, D.; Watanabe, H.; Wu, H.; Ogawa, S.; Jinnai, H.; Takahara, A. Liquid Marbles from Polymer Particles: Formation Mechanism, Physical Characterizations, and Applications. Kobunshi Ronbunshu 2017, 74: 26-35.
Fujii, S.; Yusa, S.; Nakamura, Y. DD Stimuli-Responsive Liquid Marbles: Controlling Structure, Shape, Stability, and Motion. Advanced Functional Materials 2016, 26: 7206-7223.
DOI: http://dx.doi.org/10.21967/jbb.v2i3.132
Refbacks
- There are currently no refbacks.
Copyright (c) 2017 Journal of Bioresources and Bioproducts