Cover Image

Fabrication of cellulose based superhydrophobic microspheres for the production of magnetically actuatable smart liquid marbles

Xinping Lin, Wei Ma, Hui Wu, Liulian Huang, Lihui Chen, Atsushi Takahara

Abstract


Cellulose microspheres were fabricated on the basis of sol-gel transition using NaOH/urea/H2O as the solvent system. These microspheres had an average diameter of about 30 μm. Upon modification with Fe3O4 and poly (DOPAm-co-PFOEA), superhydrophobic magnetic cellulose microspheres were generated, which were analyzed by FTIR, TG, XRD, XPS and water contact angle tests. Magnetic cellulose microspheres contained approximately 15 wt% of Fe3O4. Poly(DOPAm-co-PFOEA)/Fe3O4/cellulose microspheres and had a low surface energy and a high water-repellency. These superhydrophobic microspheres were also converted into liquid marbles via an easily scalable process.


Full Text:

PDF

References


Sun, T. L.; Qing, G. Y.; Su, B. L.; Jiang, L. Functional biointerface materials inspired from nature. Chemical Society Reviews 2011, 40: 2909-2921.

Ma, W.; Wu, H.; Higaki, Y.; Otsuka, H.; Takahara, A. A "non-sticky" superhydrophobic surface prepared by self-assembly of fluoroalkyl phosphonic acid on a hierarchically micro/nanostructured alumina gel film. Chemical Communications 2012, 48: 6824-6826.

Habibi, Y. Key advances in the chemical modification of nanocelluloses. Chemical Society Reviews 2014, 43: 1519-1542.

Klemm, D.; Heublein, B.; Fink, H.-P.; Bohn, A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angewandte Chemie International Edition 2005, 44: 3358-3393.

Lin, X.; Ma, W.; Wu, H.; Cao, S.; Huang, L.; Chen, L.; Takahara, A. Superhydrophobic magnetic poly(DOPAm-co-PFOEA)/Fe3O4/cellulose microspheres for stable liquid marbles. Chemical Communications 2016, 52: 1895-1898.

Luo, X.; Liu, S.; Zhou, J.; Zhang, L. In situ synthesis of Fe3O4/cellulose microspheres with magnetic-induced protein delivery. Journal of Materials Chemistry 2009, 19: 3538-3545.

Carlmark, A.; Malmstrom, E. Atom transfer radical polymerization from cellulose fibers at ambient temperature. Journal of the American Chemical Society 2002, 124: 900-901.

Fukuzumi, H.; Saito, T.; Wata, T.; Kumamoto, Y.; Isogai, A. Transparent and High Gas Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation. Biomacromolecules 2009, 10: 162-165.

Shang, S.-M.; Li, Z.; Xing, Y.; Xin, J. H.; Tao, X.-M. Preparation of durable hydrophobic cellulose fabric from water glass and mixed organosilanes. Applied Surface Science 2010, 257: 1495-1499.

Liu, F.; Ma, M.; Zang, D.; Gao, Z.; Wang, C. Fabrication of superhydrophobic/superoleophilic cotton for application in the field of water/oil separation. Carbohydrate Polymers 2014, 103: 480-487.

Zhang, W.; Xiao, H.; Qian, L. Enhanced water vapour barrier and grease resistance of paper bilayer-coated with chitosan and beeswax. Carbohydrate Polymers 2014, 101: 401-406.

Hufendiek, A.; Trouillet, V.; Meier, M. A. R.; Barner-Kowollik, C. Temperature Responsive Cellulose-graft-Copolymers via Cellulose Functionalization in an Ionic Liquid and RAFT Polymerization. Biomacromolecules 2014, 15: 2563-2572.

Liu, K.; Chen, L. H.; Huang, L. L.; Lai, Y. N. Evaluation of ethylenediamine-modified nanofibrillated cellulose/chitosan composites on adsorption of cationic and anionic dyes from aqueous solution. Carbohydrate Polymers 2016, 151: 1115-1119.

Xue, C.-H.; Zhang, L.; Wei, P.; Jia, S.-T. Fabrication of superhydrophobic cotton textiles with flame retardancy. Cellulose 2016, 23: 1471-1480.

Zhou, X.; Lin, X.; White, K. L.; Lin, S.; Wu, H.; Cao, S.; Huang, L.; Chen, L. Effect of the degree of substitution on the hydrophobicity of acetylated cellulose for production of liquid marbles. Cellulose 2016, 23: 811-821.

Zhang, H.; Li, Y. Q.; Xu, Y. G.; Lu, Z. X.; Chen, L. H.; Huang, L. L.; Fan, M. Z. Versatile fabrication of a superhydrophobic and ultralight cellulose-based aerogel for oil spillage clean-up. Physical Chemistry Chemical Physics 2016, 18: 28297-28306.

Cheng, D.; Yang, X.; He, Z.; Ni, Y. Potential of cellulose-based materials for the preparation of separator membranes for lithium-ion batteries (LIB). Journal of Bioresources and Bioproducts 2016, 1: 18-21.

Tian, H.; He, J. Cellulose as a Scaffold for Self-Assembly: From Basic Research to Real Applications. Langmuir 2016, 32: 12269-12282.

Huang, Y.; Yi, S.; Lv, Z.; Huang, C. Facile fabrication of superhydrophobic coatings based on two silica sols. Colloid and Polymer Science 2016, 294: 1503-1509.

Deng, S.; Huang, R.; Zhou, M.; Chen, F.; Fu, Q. Hydrophobic cellulose films with excellent strength and toughness via ball milling activated acylation of microfibrillated cellulose. Carbohydrate Polymers 2016, 154: 129-138.

Zhao, H.; Sha, L. Effect of surface modification of ammonium polyphosphate-diatomite composite filler on the flame retardancy and smoke suppression of cellulose paper. Journal of Bioresources and Bioproducts 2017, 2: 30-36.

Luo, X.; Zhang, L. Creation of regenerated cellulose microspheres with diameter ranging from micron to millimeter for chromatography applications. Journal of Chromatography A 2010, 1217: 5922-5929.

Zeng, H. B.; Hwang, D. S.; Israelachvili, J. N.; Waite, J. H. Strong reversible Fe3+-mediated bridging between dopa-containing protein films in water. Proceedings of the National Academy of Sciences of the United States of America 2010, 107: 12850-12853.

Xu, H.; Nishida, J.; Ma, W.; Wu, H.; Kobayashi, M.; Otsuka, H.; Takahara, A. Competition between Oxidation and Coordination in Cross-Linking of Polystyrene Copolymer Containing Catechol Groups. ACS Macro Letters 2012, 1: 457-460.

Xu, H.; Nishida, J.; Wu, H.; Higaki, Y.; Otsuka, H.; Ohta, N.; Takahara, A. Structural effects of catechol-containing polystyrene gels based on a dual cross-linking approach. Soft Matter 2013, 9: 1967-1974.

Aussillous, P.; Quere, D. Liquid marbles. Nature 2001, 411: 924-927.

Gao, L. C.; McCarthy T. J. Ionic liquid marbles. Langmuir 2007, 23: 10445-10447.

Matsukuma, D.; Watanabe, H.; Yamaguchi, H.; Takahara, A. Preparation of Low-Surface-Energy Poly[2-(perfluorooctyl)ethyl acrylate] Microparticles and Its Application to Liquid Marble Formation. Langmuir 2011, 27: 1269-1274.

Wu, H.; Watanabe, H.; Ma, W.; Fujimoto, A.; Higuchi, T.; Uesugi, K.; Takeuchi, A.; Suzuki, Y.; Jinnai, H.; Takahara, A. Robust Liquid Marbles Stabilized with Surface-Modified Halloysite Nanotubes. Langmuir 2013, 29: 14971-14975.

Chu, Y.; Wang, Z.; Pan, Q. Constructing Robust Liquid Marbles for Miniaturized Synthesis of Graphene/Ag Nanocomposite. Acs Applied Materials & Interfaces 2014, 6: 8378-8386.

Ogawa, S.; Watanabe, H.; Wang, L.; Jinnai, H.; McCarthy, T. J.; Takahara, A. Liquid Marbles Supported by Monodisperse Poly(methylsilsesquioxane) Particles. Langmuir 2014, 30: 9071-9075.

Serrano, M. C.; Nardecchia, S.; Gutierrez, M. C.; Ferrer, M. L.; del Monte F. Mammalian Cell Cryopreservation by Using Liquid Marbles. Acs Applied Materials & Interfaces 2015, 7: 3854-3860.

Wei, W.; Lu, R. J.; Ye, W. T.; Sun, J. H.; Zhu, Y.; Luo, J.; Liu, X. Y. Liquid Marbles Stabilized by Fluorine-Bearing Cyclomatrix Polyphosphazene Particles and Their Application as High-Efficiency Miniature Reactors. Langmuir 2016, 32: 1707-1715.

Kim, S. H.; Lee, S. Y.; Yang, S. M. Janus Microspheres for a Highly Flexible and Impregnable Water-Repelling Interface. Angewandte Chemie-International Edition 2010, 49: 2535-2538.

Zhao, Y.; Gu, H.; Xie, Z.; Shum, H. C.; Wang, B.; Gu, Z. Bioinspired Multifunctional Janus Particles for Droplet Manipulation. Journal of the American Chemical Society 2013, 135: 54-57.

Bormashenko, E. Liquid marbles: Properties and applications. Current Opinion in Colloid & Interface Science 2011, 16: 266-271.

McHale, G.; Newton, M. I. Liquid marbles: topical context within soft matter and recent progress. Soft Matter 2015, 11: 2530-2546.

Sheng, Y.; Sun, G.; Wu, J.; Ma, G.; Ngai, T. Silica-Based Liquid Marbles as Microreactors for the Silver Mirror Reaction. Angewandte Chemie International Edition 2015, 54: 7012-7017.

Ooi, C. H.; Nam-Trung, N. Manipulation of liquid marbles. Microfluidics and Nanofluidics 2015, 19: 483-495.

Sato, E.; Yuri, M.; Fujii, S.; Nishiyama, T.; Nakamura, Y.; Horibe H. Liquid marbles as a micro-reactor for efficient radical alternating copolymerization of diene monomer and oxygen. Chemical Communications 2015, 51: 17241-17244.

Shailendar, S.; Sundaram, M. M. A Feasibility Study of Localized Electrochemical Deposition Using Liquid Marbles. Materials and Manufacturing Processes 2016, 31: 81-86.

Matsukuma, D.; Watanabe, H.; Wu, H.; Ogawa, S.; Jinnai, H.; Takahara, A. Liquid Marbles from Polymer Particles: Formation Mechanism, Physical Characterizations, and Applications. Kobunshi Ronbunshu 2017, 74: 26-35.

Fujii, S.; Yusa, S.; Nakamura, Y. DD Stimuli-Responsive Liquid Marbles: Controlling Structure, Shape, Stability, and Motion. Advanced Functional Materials 2016, 26: 7206-7223.




DOI: http://dx.doi.org/10.21967/jbb.v2i3.132

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Journal of Bioresources and Bioproducts