Cover Image

Combination of ultrasonication/ mechanical refining with alkali treatment to improve the accessibility and porosity of bamboo cellulose fibers for the preparation of magnetic bionanocomposite cellulose beads

Man Li, Guigan Fang, Zhaosheng Cai, Long Liang, Jing Zhou, Lulu Wei

Abstract


Ultrasonication and mechanical refining pretreatments were carried out to enhance alkali swelling of bamboo fibers to improve accessibility and porosity. Cellulose-based magnetic beads were synthesized with the alkali swollen bamboo fibers and Fe3O4 nanoparticles. Compared to the fibers treated with alkali alone, the water retention value (WRV) increased by 33.87% for the fibers treated by sonication and alkali, and by 94.58% for those treated by mechanical refining and alkali. The increased WRV was attributed to disruption of the crystalline region of fibers in the combined treatments which resulted in decreased crystallinity and degree of polymerization of cellulose. Furthermore, compared with the control sample which was treated by alkali alone, the specific surface area and pore volume of the samples treated by the combined processes increased markedly, which favored the adsorption of Fe3O4 nanoparticles in the synthesis of functional magnetic cellulose beads for the applications of protein immobilization, drug carrier and wastewater treatment. 


Full Text:

PDF

References


Fatehi P., Ryan J., Ni Y. Adsorption of lignocelluloses of model pre-hydrolysisliquor on activated carbon. Bioresource Technology, 2013, 131: 308–314.

FitzPatrick M., Champagne P., Cunningham M. F., Whitney R. A. A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresource Technology, 2010,101(23): 8915-8922.

Wang Ngah W.S., Teong L. C., Hanafiah MAKM. Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate Polymers, 2011, 83:1446-1456.

Dias AMGC., Hussain A., Marcos A. S., Roque ACA. A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides. Biotechnology Advances, 2011, 29: 142-155.

Abdel Halim E. S. Al Deyab S. S. Removal of heavy metals from their aqueous solutions through adsorption on to natural polymers. Carbohydrate Polymers, 2011, 84(1): 454-458.

Daniel da Siiva A. L., Carvalho R. S., Trindate T. Magnetic hydrogel nanocomposites and composite nanoparticles-a review of recent patented works. Recent Pat Nanotechnol , 2013, 7: 153-166.

Polyak B., Frieddman G. Magnetic targeting foe site-specific drug delivery: applications and clinical potential. Expert Opinion on Drug Delivery, 2009, 6:53-70.

Xu P., Zeng G. M., Huang D. L., Feng C. L., Hu S., Zhao M. H., Lai C., Wei Z., Huang C., Xie G. X., Liu Z. F. Use of iron oxide nanomaterials in wastewater treatment: A review. Science of The Total Environment, 2012, 424: 1-10.

Yuan B., Yang X. Q., Xue L. W., Feng Y. N., Jiang J. H. A novel recycling system for nano-magnetic molecular imprinting immobilised cellulases: Synergistic recovery of anthocyanin from fruit and vegetable waste. Bioresource Technology, 2016, 222: 14-23.

Siró I., Plackett D. Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose, 2010, 17: 459-494.

Berthold J., Salmen L. Inverse Size Exclusion Chromatography (ISEC) for Determining the Relative Pore Size Distribution of Wood Pulps.Holzforschung, 1997, 51(4):361-368.

Maloney T.C., Li T.Q., Weise U. Intra- and inter-fiber pore closure in wet pressing. Appita,1998, 5(4): 302-306.

Raymond L.Revol J. F., Marehessauh R. H. In situ synthesis of ferrites in ionic and neutral cellulose gels.Polymer,1995,36(26): 5035-5043.

Tian C., Zheng L. Q., Miao Q. X., Cao C. Y., Ni Y. H. Improving the reactivity of kraft-based dissolving pulp for viscose rayon production by mechanical treatments. Cellulose , 2014 , 21 (5) : 3647-3654.

Paakkari T., Serimaa R. P., Fink H. Structure of amorphous cellulose. Acta Polymerica, 1989, 40(12): 731-734.

Liu W., Wang B., Hou Q. X., Chen W., Wu M. Effects of fibrillation on the wood fibers’ enzymatic hydrolysis enhanced by mechanical refining. Bioresource Technology, 2016, 102: 248-257.

Gupta R., Lee Y. Y. Pretreatment of corn stover and hybrid poplar by sodium hydroxide and hydrogen peroxide. Biotechnology Progress,2010, 26(4): 1180- 1186.

Xu J., Cheng J. J., Sharma-Shivappa R. R., Burns J. C., Sodium Hydroxide Pretreatment of Switchgrass for Ethanol Production. Energy Fuels,2010, 24(3): 2113-2119.

Ciolacu D., Pitol-Filho L., Ciolacu F. Studies concerning the accessibility of different allomorphic forms of cellulose. Cellulose, 2012, 19:55-68.

Bui H. M., Lenninger M., Manian A. P., Abu-Rous M., Schimper C. B., Schuster K. C., Bechtold T. Treatment in swelling solutions modifying cellulose fiberreactivity -Part 2: Accessibility and reactivity. Macromolecular Symposia, 2008, 262 (1): 50-64.

Li J., Liu Y., Duan C., Zhang H., Ni Y. Mechanical pretreatment improving hemicelluloses removal from cellulosic fibers during cold caustic extraction. Bioresource Technology, 2015,192: 501-506.

Kerekes R. J. Characterizing refining action in PFI mills. Tappi Journal, 2005, 4 (3): 9-14.

Bussemaker M. J., Zhang D. Effect of ultrasound on lignocellulosic biomass as a pretreatment for biorefinery and biofuel applications. Industrial & Engineering Chemistry Research, 2013, 52: 3563-3580.

Luo J., Fang Z., Smith R. L. Ultrasound-enhanced conversion of biomass to biofuels. Progress in Energy and Combustion Science, 2014, 41: 56-93.

Aliyu M., Hepher M. J. Effects of ultrasound energy on degradation of cellulose material. Ultrasonics Sonochemistry, 2000, 7(4): 265-268

Jones B. W., Venditti R., Park S., Jameel H. Comparison of lab, pilot, andindustrial scale low consistency mechanical refining for improvements inenzymatic digestibility of pretreated hardwood. Bioresource Technololy, 2014,167: 514-520.

Zhang, M., Ju, X.H., Song, X. X., Zhang, X., Pei, Z.J., Wang, D.H. Effects of cutting orientation in poplar wood biomass size reduction on enzymatic hydrolysis sugar yield. Bioresource Technology, 2015, 194: 407-410.

Batalha L. A. R., Han Q., Jameel H., Chang H. M., Colodette J. L., Gomes F. J. B. Production of fermentable sugars from sugarcane bagasse by enzymatic hydrolysis after autohydrolysis and mechanical refining. Bioresource Technology, 2015,180: 97-105.

Jayme G. Mikro-quellungsmessungen an zellstoffen. Wochenbl Papierfabr ,1944, 6: 187-194.

Nelson M. L., O’Connor R. T. Relation of certain infrared bands to cellulose crystallinity and crystal latticed type.Part I. Spectra of lattice types I, II, III and of amorphous cellulose. Journal of Applied Polymer Science, 1964, 8(3): 1311-1324.

Nam S., French A. D., Condon B. D., Concha M. Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydrate Polymers, 2016, 135: 1-9.

Luo X., Zhu J. Effects of drying-induced fiber hornification on enzy-matic saccharification of lignocelluloses. Enzyme and Microbial Technology, 2011, 48: 92-99.

Duan C., Saurabh K. V., Li J. G., Ma X. J., Ni Y. H. Combination of mechanical, alkaline and enzymatic treatments to upgrade paper-grade pulp to dissolving pulp with high reactivity. Bioresource Technology, 2016, 200: 458-463.

Hubbe M. A., Venditti R. A., Rojas O. J. What happens to cellulosic fibers during papermaking and recycling? A review. BioResources, 2007, 2(4): 739-788.

Newman R. H. Carbon-13 NMR evidence for cocrystallization of cellulose as a mechanism for hornification of bleached kraft pulp. Cellulose, 2004, 11(1): 45-52.

Grönqvist S., Hakala T. K., Kamppuri T., Vehviläinen M., Hänninen T. Fibre porosity development of dissolving pulp during mechanical and enzymatic processing. Cellulose, 2014, 21(5): 3667-3676.

Rouquerol J., Avnir D., Fairbridge C. W., Everett D. H., Haynes J. H., Pernicone N. Recommendations for the characterization of porous solids. Pure and Applied Chemistry, 1994, 66: 1739-1758.

SriBala G., Chennuru R., Mahapatra S., Vinu R. Effect of alkaline ultrasonic pretreatment on crystalline morphology and enzymatic hydrolysis of cellulose. Cellulose, 2016, 23 (3): 1725-1740.

Suslick K. S., Didenko Y., Fang M. M., Hyeon T., Kolbeck K. J., McNamara W. B. III, Mdleleni M. M., Wong M. Acoustic cavitation and its chemical consequences. Philosophical Transactions of the Royal Society, 1999, 357: 335-353.

French A. D. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose , 2014, 21:885-896.

Daniel-da-Silva A. L., Trindade T. Advances in nanocomposite technology. Intech-Open Access Publisher, 2011, 14: 319-334.

Nikolaos K. Nanocomposite Particles for Bio-Applications: Materials and Bio-Interfaces, by Tito Trindade and Ana L. Daniel da Silva. Contemporary Physics, 2012, 53(3):1-1.

Zhang Y. L., Zhang J., Dai C. M., Zhou X. F., Liu S. G. Sorption of carbamazepine from water by magnetic molecularly imprinted polymers based on chitosan-Fe3O4. Carbohydrate Polymers, 2013, 97: 809- 816.




DOI: http://dx.doi.org/10.21967/jbb.v3i2.159

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Man Li, Guigan Fang, Zhaosheng Cai, Long Liang, Jing Zhou, Lulu Wei

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.