Cover Image

Progress in the preparation and application of modified biochar for improving heavy metal ion removal from wastewater

Patric Godwin, Yuanfeng Pan, Huining Xiao, Muhammad T. Afzal

Abstract


Modified biochar (BC) is reviewed in its preparation, functionality, application in wastewater treatment and regeneration. The nature of precursor materials, preparatory conditions and modification methods are key factors influencing BC properties. Steam activation is unsuitable for improving BC surface functionality compared with chemical modifications. Alkali-treated BC possesses the highest surface functionality. Both alkali modified BC and nanomaterial impregnated BC composites are highly favorable for enhancing the adsorption of different contaminants from wastewater. Acidic treatment provides more oxygenated functional groups on BC surfaces. Future research should focus on industry-scale applications and competitive sorption for contaminant removal due to scarcity of data.


Full Text:

PDF

References


Wang N., Zhang X., Wu J., Xiao L., Yin Y., Miao A., Ji R., Yang L. Effects of microcystin-LR on the metal bioaccumulation and toxicity in Chlamydomonas reinhardtii. Water Research, 2012, 46(2): 369-377.

Ali I. The quest for active carbon adsorbent substitutes: Inexpensive adsorbents for toxic metal ions removal from wastewater. Separation and Purification Reviews, 2010, 39(PII 9309491963-4): 95-171.

Demirbas A. Heavy metal adsorption onto agro-based waste materials: A review. Journal of Hazardous Materials, 2008, 157(2-3): 220-229.

Bailey S. E., Olin T. J., Bricka R. M., Adrian D. D. A review of potentially low-cost sorbents for heavy metals. Water Research, 1999, 33(11): 2469-2479.

Dupont L., Guillon E. Removal of hexavalent chromium with a lignocellulosic substrate extracted from wheat bran. Environmental Science & Technology, 2003, 37(18): 4235-4241.

Yu J., Wang L., Chi R., Zhang Y., Xu Z., Guo J. Competitive adsorption of Pb2+ and Cd2+ on magnetic modified sugarcane bagasse prepared by two simple steps. Applied Surface Science, 2013, 268: 163-170.

Xue Y., Gao B., Yao Y., Inyang M., Zhang M., Zimmerman A. R., Ro K. S. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests. Chemical Engineering Journal, 2012, 200: 673-680.

Chen X., Chen G., Chen L., Chen Y., Lehmann J., McBride M. B., Hay A. G. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresource Technology, 2011, 102(19): 8877-8884.

Xu X., Cao X., Zhao L., Wang H., Yu H., Gao B. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environmental Science and Pollution Research, 2013, 20(1): 358-368.

Inyang M., Gao B., Yao Y., Xue Y., Zimmerman A. R., Pullammanappallil P., Cao X. Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresource Technology, 2012, 110: 50-56.

Mohan D., Jr. Pittman C. U., Bricka M., Smith F., Yancey B., Mohammad J., Steele P. H., Alexandre-Franco M. F., Gomez-Serrano V., Gong H. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. Journal of Colloid and Interface Science, 2007, 310(1): 57-73.

Cao X., Ma L., Gao B., Harris W. Dairy-Manure derived biochar effectively sorbs lead and atrazine. Environmental Science & Technology, 2009, 43(9): 3285-3291.

Mohamed B. A., Ellis N., Kim C. S., Bi X. The role of tailored biochar in increasing plant growth, and reducing bioavailability, phytotoxicity, and uptake of heavy metals in contaminated soil. Environmental Pollution, 2017, 230: 329-338.

Chingombe P., Saha B., Wakeman R. J. Surface modification and characterisation of a coal-based activated carbon. Carbon, 2005, 43(15): 3132-3143.

Manya J. J. Pyrolysis for biochar purposes: A review to establish current knowledge gaps and research needs. Environmental Science & Technology, 2012, 46(15): 7939-7954.

Ahmad M., Rajapaksha A. U., Lim J. E., Zhang M., Bolan N., Mohan D., Vithanage M., Lee S. S., Ok Y. S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 2014, 99: 19-33.

Uchimiya M., Chang S., Klasson K. T. Screening biochars for heavy metal retention in soil: Role of oxygen functional groups. Journal of Hazardous Materials, 2011, 190(1-3): 432-441.

Glaser B., Lehmann J., Zech W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - a review. Biology and Fertility of Soils, 2002, 35(4): 219-230.

Vithanage M., Rajapaksha A. U., Ahmad M., Uchimiya M., Dou X., Alessi D. S., Ok Y. S. Mechanisms of antimony adsorption onto soybean stover-derived biochar in aqueous solutions. Journal of Environmental Management, 2015, 151: 443-449.

Fushimi C., Araki K., Yamaguchi Y., Tsutsumi A. Effect of heating rate on steam gasification of biomass. 1. Reactivity of char. Industrial & Engineering Chemistry Research, 2003, 42(17): 3922-3928.

Motasemi F., Afzal M. T. A review on the microwave-assisted pyrolysis technique. Renewable & Sustainable Energy Reviews, 2013, 28: 317-330.

Berndes G., Hoogwijk M., van den Broek R. The contribution of biomass in the future global energy supply: A review of 17 studies. Biomass & Bioenergy, 2003, 25(1): 1-28.

Hall D. O. Biomass energy in industrialised countries - a view of the future. Forest Ecology and Management, 1997, 91(1): 17-45.

Panwar N. L., Kaushik S. C., Kothari S. Role of renewable energy sources in environmental protection: A review. Renewable & Sustainable Energy Reviews, 2011, 15(3): 1513-1524.

Miura M., Kaga H., Sakurai A., Kakuchi T., Takahashi K. Rapid pyrolysis of wood block by microwave heating. Journal of Analytical and Applied Pyrolysis, 2004, 71(1): 187-199.

Yagmur E., Ozmak M., Aktas Z. A novel method for production of activated carbon from waste tea by chemical activation with microwave energy. Fuel, 2008, 87(15-16): 3278-3285.

Dominguez A., Menendez J. A., Fernandez Y., Pis J. J., Nabais J. M. V., Carrott P. J. M., Carrott M. M. L. R. Conventional and microwave induced pyrolysis of coffee hulls for the production of a hydrogen rich fuel gas. Journal of Analytical and Applied Pyrolysis, 2007, 79(1-2): 128-135.

Budarin V. L., Clark J. H., Lanigan B. A., Shuttleworth P., Breeden S. W., Wilson A. J., Macquarrie D. J., Milkowski K., Jones J., Bridgeman T., Ross A. The preparation of high-grade bio-oils through the controlled, low temperature microwave activation of wheat straw. Bioresource Technology, 2009, 100(23): 6064-6068.

Huang Y. F., Kuan W. H., Lo S. L., Lin C. F. Hydrogen-rich fuel gas from rice straw via microwave-induced pyrolysis. Bioresource Technology, 2010, 101(6): 1968-1973.

Budarin V. L., Zhao Y., Gronnow M. J., Shuttleworth P. S., Breeden S. W., Macquarrie D. J., Clark J. H. Microwave-mediated pyrolysis of macro-algae. Green Chemistry, 2011, 13(9): 2330-2333.

Antal M. J., Gronli M. The art, science, and technology of charcoal production. Industrial & Engineering Chemistry Research, 2003, 42(8): 1619-1640.

Cetin E., Moghtaderi B., Gupta R., Wall T. F. Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars. Fuel, 2004, 83(16): 2139-2150.

Melligan F., Auccaise R., Novotny E. H., Leahy J. J., Hayes M. H. B., Kwapinski W. Pressurised pyrolysis of Miscanthus using a fixed bed reactor. Bioresource Technology, 2011, 102(3): 3466-3470.

Lidstrom P., Tierney J., Wathey B., Westman J. Microwave assisted organic synthesis - a review (vol 57, pg 9225, 2001). Tetrahedron, 2001, 57(51): 10229.

Nhuchhen, D.R., Afzal, M. T., Dreise, T., and Salema, A. A. Characteristics of biochar and bio-oil produced from wood pellets pyrolysis using a bench scale fixed bed, microwave reactor. Biomass and Bioenergy, 2018, 119: 293-303.

Salema, A.A., and Afzal, M.T., and Bennamoun, L. Pyrolysis of corn stalk biomass briquettes in a scaled-up microwave technology. Bioresource Technology, 2017, 233: 353-362.

Hadjittofi L., Prodromou M., Pashalidis I. Activated biochar derived from cactus fibres - Preparation, characterization and application on Cu(II) removal from aqueous solutions. Bioresource Technology, 2014, 159: 460-464.

Ahmed M. B., Zhou J. L., Ngo H. H., Guo W., Chen M. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresource Technology, 2016, 214: 836-851.

Ma Y., Liu W., Zhang N., Li Y., Jiang H., Sheng G. Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution. Bioresource Technology, 2014, 169: 403-408.

Cho H., Wepasnick K., Smith B. A., Bangash F. K., Fairbrother D. H., Ball W. P. Sorption of aqueous zn[II] and cd[II] by multiwall carbon nanotubes: The relative roles of Oxygen-Containing functional groups and graphenic carbon. Langmuir, 2010, 26(2): 967-981.

Tan Z., Qiu J., Zeng H., Liu H., Xiang J. Removal of elemental mercury by bamboo charcoal impregnated with H2O2. Fuel, 2011, 90(4): 1471-1475.

Yakout S. M., Daifullah A. E. H. M., El-Reefy S. A. Pore structure characterization of chemically modified biochar derived from rice straw. Environmental Engineering and Management Journal, 2015, 14(2): 473-480.

Shafeeyan M. S., Daud W. M. A. W., Houshmand A., Shamiri A. A review on surface modification of activated carbon for carbon dioxide adsorption. Journal of Analytical and Applied Pyrolysis, 2010, 89(2): 143-151.

Shafeeyan M. S., Daud W. M. A. W., Houshmand A., Shamiri A. A review on surface modification of activated carbon for carbon dioxide adsorption. Journal of Analytical and Applied Pyrolysis, 2010, 89(2): 143-151.

Rajapaksha A. U., Chen S. S., Tsang D. C. W., Zhang M., Vithanage M., Mandal S., Gao B., Bolan N. S., Ok Y. S. Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere, 2016, 148: 276-291.

Yang G., Jiang H. Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater. Water Research, 2014, 48: 396-405.

Zhou Y., Gao B., Zimmerman A. R., Fang J., Sun Y., Cao X. Sorption of heavy metals on chitosan-modified biochars and its biological effects. Chemical Engineering Journal, 2013, 231: 512-518.

Yong S. K., Bolan N. S., Lombi E., Skinner W., Guibal E. Sulfur-Containing chitin and chitosan derivatives as trace metal adsorbents: A review. Critical Reviews in Environmental Science and Technology, 2013, 43(16): 1741-1794.

Liu Z., Zhang F., Sasai R. Arsenate removal from water using Fe3O4-loaded activated carbon prepared from waste biomass. Chemical Engineering Journal, 2010, 160(1): 57-62.

Jing X., Wang Y., Liu W., Wang Y., Jiang H. Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar. Chemical Engineering Journal, 2014, 248: 168-174.

Chen B., Chen Z., Lv S. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresource Technology, 2011, 102(2): 716-723.

Mohan D., Kumar H., Sarswat A., Alexandre-Franco M., Jr. Pittman C. U. Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars. Chemical Engineering Journal, 2014, 236: 513-528.

Wang S., Gao B., Zimmerman A. R., Li Y., Ma L., Harris W. G., Migliaccio K. W. Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresource Technology, 2015, 175: 391-395.

Zhang M., Gao B., Varnoosfaderani S., Hebard A., Yao Y., Inyang M. Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresource Technology, 2013, 130: 457-462.

Mukherjee A., Zimmerman A. R., Harris W. Surface chemistry variations among a series of laboratory-produced biochars. Geoderma, 2011, 163(3-4): 247-255.

Beesley L., Marmiroli M. The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environmental Pollution, 2011, 159(2): 474-480.

Thines K. R., Abdullah E. C., Mubarak N. M., Ruthiraan M. Synthesis of magnetic biochar from agricultural waste biomass to enhancing route for waste water and polymer application: A review. Renewable & Sustainable Energy Reviews, 2017, 67: 257-276.

Theydan S. K., Ahmed M. J. Adsorption of methylene blue onto biomass-based activated carbon by FeCl3 activation: Equilibrium, kinetics, and thermodynamic studies. Journal of Analytical and Applied Pyrolysis, 2012, 97: 116-122.

Mun S. P., Cai Z., Zhang J. Magnetic separation of carbon-encapsulated Fe nanoparticles from thermally-treated wood char. Materials Letters, 2013, 96: 5-7.

Zhu X., Liu Y., Luo G., Qian F., Zhang S., Chen J. Facile Fabrication of Magnetic Carbon Composites from Hydrochar via Simultaneous Activation and Magnetization for Triclosan Adsorption. Environmental Science & Technology, 2014, 48(10): 5840-5848.

Wang W., Wang X., Wang X., Yang L., Wu Z., Xia S., Zhao J. Cr(VI) removal from aqueous solution with bamboo charcoal chemically modified by iron and cobalt with the assistance of microwave. Journal of Environmental Sciences, 2013, 25(9): 1726-1735.

Wang Y., Wang X., Wang X., Liu M., Wu Z., Yang L., Xia S., Zhao J. Adsorption of Pb(II) from aqueous solution to Ni-doped bamboo charcoal. Journal of Industrial and Engineering Chemistry, 2013, 19(1): 353-359.

Ruthiraan M., Mubarak N. M., Thines R. K., Abdullah E. C., Sahu J. N., Jayakumar N. S., Ganesan P. Comparative kinetic study of functionalized carbon nanotubes and magnetic biochar for removal of Cd2+ ions from wastewater. Korean Journal of Chemical Engineering, 2015, 32(3): 446-457.

Meng Y., Chen D., Sun Y., Jiao D., Zeng D., Liu Z. Adsorption of Cu2+ ions using chitosan-modified magnetic Mn ferrite nanoparticles synthesized by microwave-assisted hydrothermal method. Applied Surface Science, 2015, 324: 745-750.

Zhang Z., Wang X., Wang Y., Xia S., Chen L., Zhang Y., Zhao J. Pb(II) removal from water using Fe-coated bamboo charcoal with the assistance of microwaves. Journal of Environmental Sciences, 2013, 25(5): 1044-1053.

Wang X. J., Wang Y., Wang X., Liu M., Xia S. Q., Yin D. Q., Zhang Y. L., Zhao J. F. Microwave-assisted preparation of bamboo charcoal-based iron-containing adsorbents for Cr(VI) removal. Chemical Engineering Journal, 2011, 174(1): 326-332.

Wang Y., Wang X. J., Liu M., Wang X., Wu Z., Yang L. Z., Xia S. Q., Zhao J. F. Cr(VI) removal from water using cobalt-coated bamboo charcoal prepared with microwave heating. Industrial Crops and Products, 2012, 39: 81-88.

Saravanan P., Vinod V. T. P., Sreedhar B., Sashidhar R. B. Gum kondagogu modified magnetic nano-adsorbent: An efficient protocol for removal of various toxic metal ions. Materials Science & Engineering C-Materials for Biological Applications, 2012, 32(3): 581-586.

Jiang Y., Gong J., Zeng G., Ou X., Chang Y., Deng C., Zhang J., Liu H., Huang S. Magnetic chitosan-graphene oxide composite for anti-microbial and dye removal applications. International Journal of Biological Macromolecules, 2016, 82: 702-710.

Devi P., Saroha A. K. Synthesis of the magnetic biochar composites for use as an adsorbent for the removal of pentachlorophenol from the effluent. Bioresource Technology, 2014, 169: 525-531.

Chen Y., Wang J. Preparation and characterization of magnetic chitosan nanoparticles and its application for Cu(II) removal. Chemical Engineering Journal, 2011, 168(1): 286-292.

Reddy D. H. K., Lee S. Magnetic biochar composite: Facile synthesis, characterization, and application for heavy metal removal. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2014, 454: 96-103.

Park J., Ok Y. S., Kim S., Cho J., Heo J., Delaune R. D., Seo D. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere, 2016, 142: 77-83.

Tan G., Sun W., Xu Y., Wang H., Xu N. Sorption of mercury (II) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution. Bioresource Technology, 2016, 211: 727-735.

Kong H., He J., Gao Y., Wu H., Zhu X. Cosorption of phenanthrene and Mercury(II) from aqueous solution by soybean Stalk-Based biochar. Journal of Agricultural and Food Chemistry, 2011, 59(22): 12116-12123.

Zhou F., Wang H., Fang S., Zhang W., Qiu R. Pb(II), Cr(VI) and atrazine sorption behavior on sludge-derived biochar: Role of humic acids. Environmental Science and Pollution Research, 2015, 22(20): 16031-16039.

Li H., Dong X., Da Silva E. B., de Oliveira L. M., Chen Y., Ma L. Q. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere, 2017, 178: 466-478.




DOI: http://dx.doi.org/10.21967/jbb.v4i1.180

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Patric Godwin, Yuanfeng Pan, Huining Xiao, Muhammad T. Afzal

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.