Cover Image

Fabrication of Fe/C composites as effective electromagnetic wave absorber from natural wood fibers

Zhichao Lou, Weikai Wang, Chenglong Yuan, Yao Zhang, Yanjun Li, Lintian Yang

Abstract


With the increasing usage of varied electronic devices, the induced electromagnetic interference (EMI) irradiation pollution has become a novel environmental pollution besides of water and air pollutions, drawing a great of interests from the scientists to address EMW radiation problem via designing various electromagnetic wave (EMW) absorbers, which is supposed to be with light weight, thin thickness, wide effective absorbing bandwidth and strong absorbing capacity. One kind of the most attractive absorbers is magnetic carbon composites. Here, we successfully synthesized porous structural C/Fe composites by in-situ carbonization of pre-prepared Fe3O4/wood fibers at 1000°C. The EMW absorption property of C/Fe composites is excellent with a minimum RL value of -32.67 dB at 9.86 GHz, a matching thickness of 2.2 mm and a wide response bandwidth of 14.5 GHz. This excellent absorption performance is proved to be due to the continuous network of Fe3O4/Fe/ Fe3C hybrids, permitting optimal impedance matching, the strongest dielectric loss and the optimal magnetic loss. Moreover, the interface polarizations at Fe-Fe3C and Fe3O4-Fe interfaces, are positive to improve the microwave absorption performance.


Full Text:

PDF

References


B. Zhao, G. Shao, B. Fan, W. Zhao, R. Zhang, Investigation of the electromagnetic absorption properties of Ni@TiO2 and Ni@SiO2 composite microspheres with core–shell structure, Phys. Chem. Chem. Phys. 17 (2014) 2531–2539. doi:10.1039/C4CP05031B.

H. Lv, X. Liang, G. Ji, H. Zhang, Y. Du, Porous Three-Dimensional Flower-like Co/CoO and Its Excellent Electromagnetic Absorption Properties, ACS Appl. Mater. Interfaces. 7 (2015) 9776–9783. doi:10.1021/acsami.5b01654.

G. Wu, Y. Cheng, Q. Xie, Z. Jia, F. Xiang, H. Wu, Facile synthesis of urchin-like ZnO hollow spheres with enhanced electromagnetic wave absorption properties, Materials Letters. 144 (2015) 157–160. doi:10.1016/j.matlet.2015.01.024.

H. Wu, G. Wu, Y. Ren, L. Yang, L. Wang, X. Li, Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4–CoNiO2 hybrids, J. Mater. Chem. C. 3 (2015) 7677–7690. doi:10.1039/C5TC01716E.

X. Wang, X. Huang, Z. Chen, X. Liao, C. Liu, B. Shi, Ferromagnetic hierarchical carbon nanofiber bundles derived from natural collagen fibers: truly lightweight and high-performance microwave absorption materials, J. Mater. Chem. C. 3 (2015) 10146–10153. doi:10.1039/c5tc02689j.

X. Jian, X. Xiao, L. Deng, W. Tian, X. Wang, N. Mahmood, S. Dou, Heterostructured Nanorings of Fe-Fe3O4@C Hybrid with Enhanced Microwave Absorption Performance, ACS Appl. Mater. Interfaces. 10 (2018) 9369–9378. doi:10.1021/acsami.7b18324.

J. Xiang, J. Li, X. Zhang, Q. Ye, J. Xu, X. Shen, Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers, J. Mater. Chem. A. 2 (2014) 16905–16914. doi:10.1039/c4ta03732d.

H. Oka, A. Hojo, K. Seki, T. Takashiba, Wood construction and magnetic characteristics of impregnated type magnetic wood, J. Magn. Magn. Mater. 239 (2002) 617–619. doi:10.1016/S0304-8853(01)00684-9.

C. He, S. Wu, N. Zhao, C. Shi, E. Liu, J. Li, Carbon-Encapsulated Fe3O4 Nanoparticles as a High-Rate Lithium Ion Battery Anode Material, ACS Nano. 7 (2013) 4459–4469. doi:10.1021/nn401059h.

S. Zhao, Z. Gao, C. Chen, G. Wang, B. Zhang, Y. Chen, J. Zhang, X. Li, Y. Qin, Alternate nonmagnetic and magnetic multilayer nanofilms deposited on carbon nanocoils by atomic layer deposition to tune microwave absorption property, Carbon. 98 (2016) 196–203. doi:10.1016/j.carbon.2015.10.101.

R. Qiang, Y. Du, Y. Wang, N. Wang, C. Tian, J. Ma, P. Xu, X. Han, Rational design of yolk-shell C@C microspheres for the effective enhancement in microwave absorption, Carbon. 98 (2016) 599–606. doi:10.1016/j.carbon.2015.11.054.

H. Xu, X. Yin, M. Zhu, M. Han, Z. Hou, X. Li, L. Zhang, L. Cheng, Carbon Hollow Microspheres with a Designable Mesoporous Shell for High-Performance Electromagnetic Wave Absorption, ACS Appl. Mater. Interfaces. 9 (2017) 6332–6341. doi:10.1021/acsami.6b15826.

G. Li, T. Xie, S. Yang, J. Jin, J. Jiang, Microwave Absorption Enhancement of Porous Carbon Fibers Compared with Carbon Nanofibers, J. Phys. Chem. C. 116 (2012) 9196–9201. doi:10.1021/jp300050u.

L. Su, Y. Zhong, Z. Zhou, Role of transition metal nanoparticles in the extra lithium storage capacity of transition metal oxides: a case study of hierarchical core–shell Fe3O4@C and Fe@C microspheres, J. Mater. Chem. A. 1 (2013) 15158–15166. doi:10.1039/C3TA13233A.

C. He, S. Wu, N. Zhao, C. Shi, E. Liu, J. Li, Carbon-Encapsulated Fe3O4 Nanoparticles as a High-Rate Lithium Ion Battery Anode Material, ACS Nano. 7 (2013) 4459–4469. doi:10.1021/nn401059h.

X. Jian, X. Xiao, L. Deng, W. Tian, X. Wang, N. Mahmood, S. Dou, Heterostructured Nanorings of Fe−Fe3O4@C Hybrid with Enhanced Microwave Absorption Performance, ACS Appl. Mater. Interfaces. 10 (2018) 9369–9378. doi:10.1021/acsami.7b18324.

H. Lv, Y. Guo, Z. Yang, Y. Cheng, L.P. Wang, B. Zhang, Y. Zhao, Z.J. Xu, G. Ji, A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials, J. Mater. Chem. C. 5 (2017) 491–512. doi:10.1039/C6TC03026B.

J. Li, Y. Duan, W. Lu, T.-W. Chou, Polyaniline-stabilized electromagnetic wave absorption composites of reduced graphene oxide on magnetic carbon nanotube film, Nanotechnology. 29 (2018) 155201. doi:10.1088/1361-6528/aaac72.

B. Quan, X. Liang, X. Zhang, G. Xu, G. Ji, Y. Du, Functionalized Carbon Nanofibers Enabling Stable and Flexible Absorbers with Effective Microwave Response at Low Thickness, ACS Appl. Mater. Interfaces. 10 (2018) 41535–41543. doi:10.1021/acsami.8b16088.

Z. Lou, H. Han, M. Zhou, J. Han, J. Cai, C. Huang, J. Zou, X. Zhou, H. Zhou, Z. Sun, Synthesis of Magnetic Wood with Excellent and Tunable Electromagnetic Wave-Absorbing Properties by a Facile Vacuum/Pressure Impregnation Method, ACS Sustain. Chem. Eng. 6 (2018) 1000–1008. doi:10.1021/acssuschemeng.7b03332.

Z. Lou, Y. Zhang, M. Zhou, H. Han, J. Cai, L. Yang, C. Yuan, Y. Li, Synthesis of Magnetic Wood Fiber Board and Corresponding Multi-Layer Magnetic Composite Board, with Electromagnetic Wave Absorbing Properties, Nanomaterials. 8 (2018) 441. doi:10.3390/nano8060441.

Z. Lou, Y. Li, H. Han, H. Ma, L. Wang, J. Cai, L. Yang, C. Yuan, J. Zou, Synthesis of Porous 3D Fe/C Composites from Waste Wood with Tunable and Excellent Electromagnetic Wave Absorption Performance, ACS Sustain. Chem. Eng. 6 (2018) 15598–15607. doi:10.1021/acssuschemeng.8b04045.

I.D. Cave, Theory of X-ray measurement of microfibril angle in wood, Wood Sci.Technol. 31 (1997) 143–152. doi:10.1007/BF00705881.

Z. Lou, Y. Zhang, M. Zhou, H. Han, J. Cai, L. Yang, C. Yuan, Y. Li, Synthesis of Magnetic Wood Fiber Board and Corresponding Multi-Layer Magnetic Composite Board, with Electromagnetic Wave Absorbing Properties, Nanomaterials. 8 (2018) 441. doi:10.3390/nano8060441.

W.-J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang, L.-J. Zhang, J.-Q. Wang, J.-S. Hu, Z. Wei, L.-J. Wan, Understanding the High Activity of Fe-N-C Electrocatalysts in Oxygen Reduction: Fe/Fe3C Nanoparticles Boost the Activity of Fe-N-x, J. Am. Chem. Soc. 138 (2016) 3570–3578. doi:10.1021/jacs.6b00757.

K.O. Reddy, C.U. Maheswari, M. Shukla, J.I. Song, A.V. Rajulu, Tensile and structural characterization of alkali treated Borassus fruit fine fibers, Compos. Pt. B-Eng. 44 (2013) 433–438. doi:10.1016/j.compositesb.2012.04.075.

C.R. Vestal, Z.J. Zhang, Atom transfer radical polymerization synthesis and magnetic characterization of MnFe2O4/polystyrene core/shell nanoparticles, J. Am. Chem. Soc. 124 (2002) 14312–14313. doi:10.1021/ja0274709.




DOI: http://dx.doi.org/10.21967/jbb.v4i1.185

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Zhichao Lou, Weikai Wang, Chenglong Yuan, Yao Zhang, Yanjun Li, Lintian Yang

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.