Cover Image

Lignin-containing cellulose nanomaterials: A promising new nanomaterial for numerous applications

Chinomso M. Ewulonu, Xiuran Liu, Min Wu, Yong Huang

Abstract


The demand for sustainable functional materials with an eco-friendly preparation process is on the rise. Lignocellulosics has been attributed as the most sustainable bioresource on earth which can meet the stringent requirements of functionalization. However, cellulose nanomaterials obtained from lignocellulosics which has reached advanced stages as a sustainable functional material is challenged by its preparation procedures. These procedures cannot best be described as sustainable and eco-friendly owning to lots of energy and chemicals spent in the pre-treatment and purification processes. These processes are intended to aid fractionation into the major components in order to remove lignin and hemicellulose for the production of cellulose nanomaterials. This work is thus centred on reviewing the progress achieved in introducing a new cellulose nanomaterial containing lignin. The preparation processes, properties and applications of this new lignin-containing cellulose nanomaterial will be discussed in order to chart a sustainable preparation route for cellulose nanomaterials.


Full Text:

PDF

References


Abe, K., Nakatsubo, F., & Yano, H. (2009). High-strength nanocomposite based on fibrillated chemi-thermomechanical pulp. Composites Science and Technology, 69(14), 2434–2437. https://doi.org/10.1016/j.compscitech.2009.06.015

Bian, H., Chen, L., Dai, H., & Zhu, J. Y. (2017a). Effect of fiber drying on properties of lignin containing cellulose nanocrystals and nanofibrils produced through maleic acid hydrolysis. Cellulose, 24(10), 4205–4216. https://doi.org/10.1007/s10570-017-1430-7

Bian, H., Chen, L., Dai, H., & Zhu, J. Y. (2017b). Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable di-carboxylic acid. Carbohydrate Polymers, 167, 167–176. https://doi.org/10.1016/j.carbpol.2017.03.050

Brinchi, L., Cotana, F., Fortunati, E., & Kenny, J. M. M. (2013). Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. Carbohydrate Polymers, 94(1), 154–169. https://doi.org/10.1016/j.carbpol.2013.01.033

Brodin, M., Vallejos, M., Tanase Opedal, M., Area, C., & Chinga-Carrasco, G. (2017). Lignocellulosics as sustainable resources for production of bioplastics e A review. Journal of Cleaner Production, 162, 646–664. https://doi.org/10.1016/j.jclepro.2017.05.209

Chaker, A., Alila, S., Mutjé, P., Vilar, M. R., & Boufi, S. (2013). Key role of the hemicellulose content and the cell morphology on the nanofibrillation effectiveness of cellulose pulps. Cellulose, 20(6), 2863–2875. https://doi.org/10.1007/s10570-013-0036-y

Chen, H. (2014). Biotechnology of lignocellulose: Theory and practice. In Biotechnology of Lignocellulose: Theory and Practice (pp. 1–511). https://doi.org/10.1007/978-94-007-6898-7

Chen, L., Wang, Q., Hirth, K., Baez, C., Agarwal, U. P., & Zhu, J. Y. (2015). Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose, 22(3), 1753–1762. https://doi.org/10.1007/s10570-015-0615-1

Chen, W., Yu, H., Liu, Y., Chen, P., Zhang, M., & Hai, Y. (2011). Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydrate Polymers, 83(4), 1804–1811. https://doi.org/10.1016/j.carbpol.2010.10.040

Dong, S., Bortner, M. J., & Roman, M. (2016). Analysis of the sulfuric acid hydrolysis of wood pulp for cellulose nanocrystal production : A central composite design study, 93, 76–87.

Dungani, R., Karina, M., Subyakto, Sulaeman, A., Hermawan, D., & Hadiyane, A. (2016). Agricultural waste fibers towards sustainability and advanced utilization: A review. Asian Journal of Plant Sciences. https://doi.org/10.3923/ajps.2016.42.55

Espinosa, E., Sánchez, R., González, Z., Domínguez-Robles, J., Ferrari, B., & Rodríguez, A. (2017). Rapidly growing vegetables as new sources for lignocellulose nanofibre isolation: Physicochemical, thermal and rheological characterisation. Carbohydrate Polymers, 175, 27–37. https://doi.org/10.1016/j.carbpol.2017.07.055

Fukuzumi, H., Saito, T., Iwata, T., Kumamoto, Y., & Isogai, A. (2009). Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules, 10(1), 162–165. https://doi.org/10.1021/bm801065u

Fukuzumi, H., Saito, T., Okita, Y., & Isogai, A. (2010). Thermal stabilization of TEMPO-oxidized cellulose. https://doi.org/10.1016/j.polymdegradstab.2010.06.015

Grishkewich, N., Mohammed, N., Tang, J., & Chiu Tam, K. (2017). Recent advances in the application of cellulose nanocrystals. https://doi.org/10.1016/j.cocis.2017.01.005

Habibi, Y. (2014). Key advances in the chemical modification of nanocelluloses. Chem. Soc. Rev, 43, 1519. https://doi.org/10.1039/c3cs60204d

Han, J. S., & Rowell, J. S. (1997). Chemical Composition of Fibers. In PAPER AND COMPOSITES FROM AGRO-BASED RESOURCES (pp. 83–134).

Henriksson, M., Henriksson, G., Berglund, L. A., & Lindström, T. (2007). An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. European Polymer Journal, 43(8), 3434–3441. https://doi.org/10.1016/j.eurpolymj.2007.05.038

Herrera, M., Thitiwutthisakul, K., Yang, X., Rujitanaroj, P. on, Rojas, R., & Berglund, L. (2018). Preparation and evaluation of high-lignin content cellulose nanofibrils from eucalyptus pulp. Cellulose, 25(5), 3121–3133. https://doi.org/10.1007/s10570-018-1764-9

Ibrahima, C., Diop, K., Tajvidi, M., Bilodeau, M. A., Bousfield, D. W., & Hunt, J. F. (2017). Evaluation of the incorporation of lignocellulose nanofibrils as sustainable adhesive replacement in medium density fiberboards. Industrial Crops & Products, 109, 27–36. https://doi.org/10.1016/j.indcrop.2017.08.004

Ioelovich, M. (2012). Optimal Conditions for Isolation of Nanocrystalline Cellulose Particles. Nanoscience and Nanotechnology, 2(2), 9–13. https://doi.org/10.5923/j.nn.20120202.03

Jiang, F., & Hsieh, Y. Lo. (2013). Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydrate Polymers, 95(1), 32–40. https://doi.org/10.1016/j.carbpol.2013.02.022

Jiang, Z., & Hu, C. (2016). Selective extraction and conversion of lignin in actual biomass to monophenols: A review. Journal of Energy Chemistry, 25, 947–956. https://doi.org/10.1016/j.jechem.2016.10.008

Julkapli, N. M., & Bagheri, S. (2016). Progress on nanocrystalline cellulose biocomposites. Reactive and Functional Polymers, 112, 9–21. https://doi.org/10.1016/j.reactfunctpolym.2016.12.013

Kalia, S., Kaith, B. S., & Kaur, I. (2014). Cellulose Fibers: Bio-and Nano-polymer Composites. Green Chemistry and Technology, (1), 1–7373. https://doi.org/10.1007/s13398-014-0173-7.2

Khalil, H. P. S. A., Davoudpour, Y., Islam, N., Mustapha, A., Sudesh, K., Dungani, R., … Jawaid, M. (2014). Production and modification of nanofibrillated cellulose using various mechanical processes: A review. Carbohydrate Polymers, 99, 649–665. https://doi.org/10.1016/j.carbpol.2013.08.069

Lili, H. L., Cuicui, Z., Zhibin, L., Xiaofan, H., & Ni, Z. Y. (2018). A novel method to prepare lignocellulose nanofibrils directly from bamboo chips. Cellulose. https://doi.org/10.1007/s10570-018-2067-x

Lorenz, M., Sattler, S., Reza, M., Bismarck, A., & Kontturi, E. (2017). Cellulose nanocrystals by acid vapour: towards more effortless isolation of cellulose nanocrystals. Faraday Discuss., 202, 315–330. https://doi.org/10.1039/C7FD00053G

Marie-Ange Arsène, Ketty Bilba, Holmer Savastano Junior, & Khosrow Ghavamic. (2013). Treatments of Non-wood Plant Fibres Used as Reinforcement in Composite Materials. Materials Research, 16(4), 903–923. https://doi.org/10.1590/S1516-14392013005000084

Mohamad Haafiz, M. K., Eichhorn, S. J., Hassan, A., & Jawaid, M. (2013). Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohydrate Polymers, 93(2), 628–634. https://doi.org/10.1016/j.carbpol.2013.01.035

Mondal, S. (2017). Preparation, properties and applications of nanocellulosic materials. Carbohydrate Polymers, 163, 301–316. https://doi.org/10.1016/j.carbpol.2016.12.050

Morales, L. O., Iakovlev, M., Martin-Sampedro, R., Rahikainen, J. L., Laine, J., van Heiningen, A., & Rojas, O. J. (2014). Effects of residual lignin and heteropolysaccharides on the bioconversion of softwood lignocellulose nanofibrils obtained by SO2-ethanol-water fractionation. Bioresource Technology, 161, 55–62. https://doi.org/10.1016/j.biortech.2014.03.025

Nair, S. S., Kuo, P.-Y., Chen, H., & Yan, N. (2017). Investigating the effect of lignin on the mechanical, thermal, and barrier properties of cellulose nanofibril reinforced epoxy composite. Industrial Crops and Products, 100, 208–217. https://doi.org/10.1016/j.indcrop.2017.02.032

Nair, S. S., & Yan, N. (2015). Effect of high residual lignin on the thermal stability of nanofibrils and its enhanced mechanical performance in aqueous environments. Cellulose, 22(5), 3137–3150. https://doi.org/10.1007/s10570-015-0737-5

Nechyporchuk, O., Belgacem, M. N., & Bras, J. (2016). Production of cellulose nanofibrils: A review of recent advances. Industrial Crops and Products. https://doi.org/10.1016/j.indcrop.2016.02.016

Pääkko, M., Ankerfors, M., Kosonen, H., Nykänen, A., Ahola, S., Österberg, M., … Lindström, T. (2007). Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules, 8(6), 1934–1941. https://doi.org/10.1021/bm061215p

Pejic, B. M., Kostic, M. M., Skundric, P. D., & Praskalo, J. Z. (2008). The effects of hemicelluloses and lignin removal on water uptake behavior of hemp fibers. https://doi.org/10.1016/j.biortech.2007.12.073

Phanthong, P., Reubroycharoen, P., Hao, X., Xu, G., Abudula, A., & Guan, G. (2018). Nanocellulose: Extraction and application. Carbon Resources Conversion, 1, 32–43. https://doi.org/10.1016/j.crcon.2018.05.004

Poletto, M., Zattera, A. J., Forte, M. M. C., & Santana, R. M. C. (2012). Thermal decomposition of wood: Influence of wood components and cellulose crystallite size. Bioresource Technology, 109, 148–153. https://doi.org/10.1016/j.biortech.2011.11.122

Poletto, M., Zattera, A. J., & Santana, R. M. C. (2012). Thermal decomposition of wood: Kinetics and degradation mechanisms. Bioresource Technology, 126, 7–12. https://doi.org/10.1016/j.biortech.2012.08.133

Rojo, E., Peresin, M. S., Sampson, W. W., Hoeger, I. C., Vartiainen, J., Laine, J., & Rojas, O. J. (2015). Comprehensive elucidation of the effect of residual lignin on the physical, barrier, mechanical and surface properties of nanocellulose films. Green Chem., 17(3), 1853–1866. https://doi.org/10.1039/C4GC02398F

Sánchez, R., Espinosa, E., Domínguez-Robles, J., Loaiza, J. M., & Rodríguez, A. (2016). Isolation and characterization of lignocellulose nanofibers from different wheat straw pulps. International Journal of Biological Macromolecules, 92, 1025–1033. https://doi.org/10.1016/j.ijbiomac.2016.08.019

Sharma, P. R., & Varma, A. J. (2014a). Functionalized celluloses and their nanoparticles: Morphology, thermal properties, and solubility studies. Carbohydrate Polymers, 104, 135–142. https://doi.org/10.1016/j.carbpol.2014.01.015

Sharma, P. R., & Varma, A. J. (2014b). Thermal stability of cellulose and their nanoparticles: Effect of incremental increases in carboxyl and aldehyde groups. Carbohydrate Polymers, 114, 339–343. https://doi.org/10.1016/j.carbpol.2014.08.032

Spence, K. L., Venditti, R. A., Rojas, O. J., Habibi, Y., & Pawlak, J. J. (2011). A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose, 18(4), 1097–1111. https://doi.org/10.1007/s10570-011-9533-z

Tarrés, Q., Ehman, N. V., Vallejos, M. E., Area, M. C., Delgado-Aguilar, M., & Mutjé, P. (2017). Lignocellulosic nanofibers from triticale straw: The influence of hemicelluloses and lignin in their production and properties. Carbohydrate Polymers, 163, 20–27. https://doi.org/10.1016/j.carbpol.2017.01.017

Thomas, S., Paul, S. A., Pothan, L. A., & Deepa, B. (2011). Natural Fibres: Structure, Properties and Applications. In S. Kalia, B. S. Kaith, & I. Kaur (Eds.), Cellulose Fibers: Bio- and Nano-Polymer Composites: Green Chemistry and Technology (pp. 3–42). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-17370-7_1

Trache, D., Hussin, M. H., Haafiz, M. K. M., & Thakur, V. K. (2017). Recent progress in cellulose nanocrystals: sources and production. Nanoscale, 9(5), 1763–1786. https://doi.org/10.1039/C6NR09494E

Wei, L., Agarwal, U. P., Matuana, L., Sabo, R. C., & Stark, N. M. (2018). Performance of high lignin content cellulose nanocrystals in poly(lactic acid). Polymer (United Kingdom), 135, 305–313. https://doi.org/10.1016/j.polymer.2017.12.039

Yanna Li, Yongzhuang Liu, Wenshuai Chen, QingwenWang, Yixing Liu, J. L. and H. Y. (2016). Facile extraction of cellulose nanocrystals from wood using ethanol and peroxide solvothermal pretreatment followed by ultrasonic nanofibrillatio. Green Chemistry, 18(4), 869–1160.




DOI: http://dx.doi.org/10.21967/jbb.v4i1.186

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Chinomso M. Ewulonu, Xiuran Liu, Min Wu, Yong Huang

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.