Cover Image

Lignin-containing cellulose nanomaterials: A promising new nanomaterial for numerous applications

Chinomso M. Ewulonu, Xiuran Liu, Min Wu, Yong Huang


The demand for sustainable functional materials with an eco-friendly preparation process is on the rise. Lignocellulosics has been attributed as the most sustainable bioresource on earth which can meet the stringent requirements of functionalization. However, cellulose nanomaterials obtained from lignocellulosics which has reached advanced stages as a sustainable functional material is challenged by its preparation procedures. These procedures cannot best be described as sustainable and eco-friendly owning to lots of energy and chemicals spent in the pre-treatment and purification processes. These processes are intended to aid fractionation into the major components in order to remove lignin and hemicellulose for the production of cellulose nanomaterials. This work is thus centred on reviewing the progress achieved in introducing a new cellulose nanomaterial containing lignin. The preparation processes, properties and applications of this new lignin-containing cellulose nanomaterial will be discussed in order to chart a sustainable preparation route for cellulose nanomaterials.

Full Text:



Abe, K., Nakatsubo, F., & Yano, H. (2009). High-strength nanocomposite based on fibrillated chemi-thermomechanical pulp. Composites Science and Technology, 69(14), 2434–2437.

Bian, H., Chen, L., Dai, H., & Zhu, J. Y. (2017a). Effect of fiber drying on properties of lignin containing cellulose nanocrystals and nanofibrils produced through maleic acid hydrolysis. Cellulose, 24(10), 4205–4216.

Bian, H., Chen, L., Dai, H., & Zhu, J. Y. (2017b). Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable di-carboxylic acid. Carbohydrate Polymers, 167, 167–176.

Brinchi, L., Cotana, F., Fortunati, E., & Kenny, J. M. M. (2013). Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. Carbohydrate Polymers, 94(1), 154–169.

Brodin, M., Vallejos, M., Tanase Opedal, M., Area, C., & Chinga-Carrasco, G. (2017). Lignocellulosics as sustainable resources for production of bioplastics e A review. Journal of Cleaner Production, 162, 646–664.

Chaker, A., Alila, S., Mutjé, P., Vilar, M. R., & Boufi, S. (2013). Key role of the hemicellulose content and the cell morphology on the nanofibrillation effectiveness of cellulose pulps. Cellulose, 20(6), 2863–2875.

Chen, H. (2014). Biotechnology of lignocellulose: Theory and practice. In Biotechnology of Lignocellulose: Theory and Practice (pp. 1–511).

Chen, L., Wang, Q., Hirth, K., Baez, C., Agarwal, U. P., & Zhu, J. Y. (2015). Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose, 22(3), 1753–1762.

Chen, W., Yu, H., Liu, Y., Chen, P., Zhang, M., & Hai, Y. (2011). Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydrate Polymers, 83(4), 1804–1811.

Dong, S., Bortner, M. J., & Roman, M. (2016). Analysis of the sulfuric acid hydrolysis of wood pulp for cellulose nanocrystal production : A central composite design study, 93, 76–87.

Dungani, R., Karina, M., Subyakto, Sulaeman, A., Hermawan, D., & Hadiyane, A. (2016). Agricultural waste fibers towards sustainability and advanced utilization: A review. Asian Journal of Plant Sciences.

Espinosa, E., Sánchez, R., González, Z., Domínguez-Robles, J., Ferrari, B., & Rodríguez, A. (2017). Rapidly growing vegetables as new sources for lignocellulose nanofibre isolation: Physicochemical, thermal and rheological characterisation. Carbohydrate Polymers, 175, 27–37.

Fukuzumi, H., Saito, T., Iwata, T., Kumamoto, Y., & Isogai, A. (2009). Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules, 10(1), 162–165.

Fukuzumi, H., Saito, T., Okita, Y., & Isogai, A. (2010). Thermal stabilization of TEMPO-oxidized cellulose.

Grishkewich, N., Mohammed, N., Tang, J., & Chiu Tam, K. (2017). Recent advances in the application of cellulose nanocrystals.

Habibi, Y. (2014). Key advances in the chemical modification of nanocelluloses. Chem. Soc. Rev, 43, 1519.

Han, J. S., & Rowell, J. S. (1997). Chemical Composition of Fibers. In PAPER AND COMPOSITES FROM AGRO-BASED RESOURCES (pp. 83–134).

Henriksson, M., Henriksson, G., Berglund, L. A., & Lindström, T. (2007). An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. European Polymer Journal, 43(8), 3434–3441.

Herrera, M., Thitiwutthisakul, K., Yang, X., Rujitanaroj, P. on, Rojas, R., & Berglund, L. (2018). Preparation and evaluation of high-lignin content cellulose nanofibrils from eucalyptus pulp. Cellulose, 25(5), 3121–3133.

Ibrahima, C., Diop, K., Tajvidi, M., Bilodeau, M. A., Bousfield, D. W., & Hunt, J. F. (2017). Evaluation of the incorporation of lignocellulose nanofibrils as sustainable adhesive replacement in medium density fiberboards. Industrial Crops & Products, 109, 27–36.

Ioelovich, M. (2012). Optimal Conditions for Isolation of Nanocrystalline Cellulose Particles. Nanoscience and Nanotechnology, 2(2), 9–13.

Jiang, F., & Hsieh, Y. Lo. (2013). Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydrate Polymers, 95(1), 32–40.

Jiang, Z., & Hu, C. (2016). Selective extraction and conversion of lignin in actual biomass to monophenols: A review. Journal of Energy Chemistry, 25, 947–956.

Julkapli, N. M., & Bagheri, S. (2016). Progress on nanocrystalline cellulose biocomposites. Reactive and Functional Polymers, 112, 9–21.

Kalia, S., Kaith, B. S., & Kaur, I. (2014). Cellulose Fibers: Bio-and Nano-polymer Composites. Green Chemistry and Technology, (1), 1–7373.

Khalil, H. P. S. A., Davoudpour, Y., Islam, N., Mustapha, A., Sudesh, K., Dungani, R., … Jawaid, M. (2014). Production and modification of nanofibrillated cellulose using various mechanical processes: A review. Carbohydrate Polymers, 99, 649–665.

Lili, H. L., Cuicui, Z., Zhibin, L., Xiaofan, H., & Ni, Z. Y. (2018). A novel method to prepare lignocellulose nanofibrils directly from bamboo chips. Cellulose.

Lorenz, M., Sattler, S., Reza, M., Bismarck, A., & Kontturi, E. (2017). Cellulose nanocrystals by acid vapour: towards more effortless isolation of cellulose nanocrystals. Faraday Discuss., 202, 315–330.

Marie-Ange Arsène, Ketty Bilba, Holmer Savastano Junior, & Khosrow Ghavamic. (2013). Treatments of Non-wood Plant Fibres Used as Reinforcement in Composite Materials. Materials Research, 16(4), 903–923.

Mohamad Haafiz, M. K., Eichhorn, S. J., Hassan, A., & Jawaid, M. (2013). Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohydrate Polymers, 93(2), 628–634.

Mondal, S. (2017). Preparation, properties and applications of nanocellulosic materials. Carbohydrate Polymers, 163, 301–316.

Morales, L. O., Iakovlev, M., Martin-Sampedro, R., Rahikainen, J. L., Laine, J., van Heiningen, A., & Rojas, O. J. (2014). Effects of residual lignin and heteropolysaccharides on the bioconversion of softwood lignocellulose nanofibrils obtained by SO2-ethanol-water fractionation. Bioresource Technology, 161, 55–62.

Nair, S. S., Kuo, P.-Y., Chen, H., & Yan, N. (2017). Investigating the effect of lignin on the mechanical, thermal, and barrier properties of cellulose nanofibril reinforced epoxy composite. Industrial Crops and Products, 100, 208–217.

Nair, S. S., & Yan, N. (2015). Effect of high residual lignin on the thermal stability of nanofibrils and its enhanced mechanical performance in aqueous environments. Cellulose, 22(5), 3137–3150.

Nechyporchuk, O., Belgacem, M. N., & Bras, J. (2016). Production of cellulose nanofibrils: A review of recent advances. Industrial Crops and Products.

Pääkko, M., Ankerfors, M., Kosonen, H., Nykänen, A., Ahola, S., Österberg, M., … Lindström, T. (2007). Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules, 8(6), 1934–1941.

Pejic, B. M., Kostic, M. M., Skundric, P. D., & Praskalo, J. Z. (2008). The effects of hemicelluloses and lignin removal on water uptake behavior of hemp fibers.

Phanthong, P., Reubroycharoen, P., Hao, X., Xu, G., Abudula, A., & Guan, G. (2018). Nanocellulose: Extraction and application. Carbon Resources Conversion, 1, 32–43.

Poletto, M., Zattera, A. J., Forte, M. M. C., & Santana, R. M. C. (2012). Thermal decomposition of wood: Influence of wood components and cellulose crystallite size. Bioresource Technology, 109, 148–153.

Poletto, M., Zattera, A. J., & Santana, R. M. C. (2012). Thermal decomposition of wood: Kinetics and degradation mechanisms. Bioresource Technology, 126, 7–12.

Rojo, E., Peresin, M. S., Sampson, W. W., Hoeger, I. C., Vartiainen, J., Laine, J., & Rojas, O. J. (2015). Comprehensive elucidation of the effect of residual lignin on the physical, barrier, mechanical and surface properties of nanocellulose films. Green Chem., 17(3), 1853–1866.

Sánchez, R., Espinosa, E., Domínguez-Robles, J., Loaiza, J. M., & Rodríguez, A. (2016). Isolation and characterization of lignocellulose nanofibers from different wheat straw pulps. International Journal of Biological Macromolecules, 92, 1025–1033.

Sharma, P. R., & Varma, A. J. (2014a). Functionalized celluloses and their nanoparticles: Morphology, thermal properties, and solubility studies. Carbohydrate Polymers, 104, 135–142.

Sharma, P. R., & Varma, A. J. (2014b). Thermal stability of cellulose and their nanoparticles: Effect of incremental increases in carboxyl and aldehyde groups. Carbohydrate Polymers, 114, 339–343.

Spence, K. L., Venditti, R. A., Rojas, O. J., Habibi, Y., & Pawlak, J. J. (2011). A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose, 18(4), 1097–1111.

Tarrés, Q., Ehman, N. V., Vallejos, M. E., Area, M. C., Delgado-Aguilar, M., & Mutjé, P. (2017). Lignocellulosic nanofibers from triticale straw: The influence of hemicelluloses and lignin in their production and properties. Carbohydrate Polymers, 163, 20–27.

Thomas, S., Paul, S. A., Pothan, L. A., & Deepa, B. (2011). Natural Fibres: Structure, Properties and Applications. In S. Kalia, B. S. Kaith, & I. Kaur (Eds.), Cellulose Fibers: Bio- and Nano-Polymer Composites: Green Chemistry and Technology (pp. 3–42). Berlin, Heidelberg: Springer Berlin Heidelberg.

Trache, D., Hussin, M. H., Haafiz, M. K. M., & Thakur, V. K. (2017). Recent progress in cellulose nanocrystals: sources and production. Nanoscale, 9(5), 1763–1786.

Wei, L., Agarwal, U. P., Matuana, L., Sabo, R. C., & Stark, N. M. (2018). Performance of high lignin content cellulose nanocrystals in poly(lactic acid). Polymer (United Kingdom), 135, 305–313.

Yanna Li, Yongzhuang Liu, Wenshuai Chen, QingwenWang, Yixing Liu, J. L. and H. Y. (2016). Facile extraction of cellulose nanocrystals from wood using ethanol and peroxide solvothermal pretreatment followed by ultrasonic nanofibrillatio. Green Chemistry, 18(4), 869–1160.



  • There are currently no refbacks.

Copyright (c) 2019 Chinomso M. Ewulonu, Xiuran Liu, Min Wu, Yong Huang

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.