Dissociation of intra/inter-molecular hydrogen bonds of cellulose molecules in the dissolution processe: a mini review

Xingya Kang, Shigenori Kugaa, Limei Wang, Min Wu, Yong Huang

Abstract


Cellulose is abundant in nature, with the advantages of low-cost, biodegradable and biocompatible, low density and high strength. However, the development and application of cellulose has been lagging behind its potential due to its unique properties. Cellulose has a large quantity of hydroxyl groups which can easily form hydrogen bond networks. The huge hydrogen bond network makes it extremely difficult to dissolve or melt cellulose, thus limiting the effective use of cellulose resources. To dissolve cellulose, the key is to break the hydrogen bonds. This article sums up recent studies on the dissociation or breakage of the intramolecular and intermolecular hydrogen bonds in the dissolution of cellulose.


Full Text:

PDF

References


Zugenmaier P., Comformation and packing of vaioius crystalline cellulose fiber. Progress in Polymer Science, 2001, 26(9): 1341-1417.

Wang H., Gurau G., Rogers R. D. Ionic liquid processing of cellulose. Chemical Society Reviews, 2012, 41(4): 1519–1537.

Burger C., Maron R., Michels C., Mick K. P. New types of cellulose materials obtained by an alternative spinning method. Fibre Chemistry, 1996, 28(1): 22-27.

Mortimer S. A., Peguy A. A. The formation of structure in the spinning and coagulation of Lyocell fibres. Cellulose chemistry and technology, 1996, 30(1-2): 117-132.

Chanzy H., Dubé M., Marchessualt R. H. Cyrstallization of cellulose with N-methylmorpholine N-oxide: A new method of texturing cellulose. Journal of Polymer Science: Polymer Letters Edition, 1979, 17(4): 219-226.

Chen J. H., Guan Y., Wang K., Zhang X. M., Xu F., Sun R. C. Combined effects of raw materials and solvent systems on the preparation and properties of regenerated cellulose fibers. Carbohydrate Polymers, 2015, 128: 147–153.

Gagnaire D., Mancier D., Vincendon M. Cellulose organic solutions: A nuclear magnetic resonance investigation. Journal of Polymer Science: Polymer Chemistry Edition, 1980, 18(1): 13-25.

Chanzy H., Nawrot S., Peguy A., Smith P. Phase Behavior of the Quasiternary System NMethylmorpholine-N-Oxide, Water, and Cellulose. Journal of Polymer Science: Polymer Physics Edition, 1982, 20(10): 1909-1924.

Chanzy H., Noe P., Paillet M., Smith P. Swelling and dissolution of cellulose in amine oxide/water system. Journal of Applied Polymer Science: Applied Polymer Symposium, 1983, 27, 239-259.

Maia E., Péguy A., Pèrez S. Cellulose organic solventsⅠ. The sturcture of N-methylmorpholine N-oxide and its monohydrate. Acta Crystallographica, 1981, B37, 1858-1862.

Maia E., Pèrez S. Cellulose organic solventsⅡ. The structure of N-methylmoPrholine N-oxide 2.5H2O. Acta Crystallographica, 1982, B38, 849-852.

Rosenau T., Potthast A., Sixta H., Kosma P. The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (lyocell process). Progress Effect of Water Content in N‑Methylmorpholine N‑Oxide/Cellulose Solutions on Thermodynamics, Structure, and Hydrogen Bonding in Polymer Science, 2001, 26(9): 1763-1837.

Rabideau B. D., Ismail A. E. Effect of Water Content in N-Methylmorpholine N-Oxide/Cellulose Solutions on Thermodynamics, Structure, and Hydrogen Bonding. The Journal of Physical Chemistry B, 2015, 119(48): 15014−15022.

Dawseya T. R., McCormicka C. L. The Lithium Chloride/Dimethylacetamide Solvent for Cellulose: A Literature Review. Journal of Macromolecular Science, Part C: Polymer Reviews, 1990, 30 (3-4): 405-440.

McCormick C. L., Callais P. A., Hutchinson Jr. B. H. Solution studies of cellulose in lithium chloride and N,N-dimethylacetamide. Macromolecules, 1985, 18(12): 2394-2401.

Morgenstern B., Kammer H. W., Berger W., Skrabal, P. 7Li-NMR Study on Cellulose/LiCl/N.N-Dimethylacetamide Solutions. Acta Polymerica, 1992, 43(6): 356−357.

Zhang C., Liu R. G., Xiang J. F., Kang H. L., Liu Z. L., Huang Y. Dissolution Mechanism of Cellulose in N,N-Dimethylacetamide/Lithium Chloride: Revisiting through Molecular Interactions. The Journal of Physical Chemistry B, 2014, 118(31): 9507−9514.

Daisuke I., Daisuke T., Takayoshi M. Effect of solvent exchange on the solid structure and dissolution behavior of cellulose. Biomacromolecules, 2003, 4(5): 1238-1243.

Hajime A., Daisuke T., Takayoshi M. Characterization of aggregate structure in mercerized cellulose/LiClDMAc solution using light scattering and rheological measurements. Biomacromolecules, 2006, 7(4): 1311-1317.

Chrapava S., Touraud D., Rosenau T., Potthast A., Kunz W. The investigation of the influence of water and temperature on the LiCl/DMAc/cellulose system. Physical Chemistry Chemical Physics, 2003, 5, 1842–1847.

Nobutake T., Daisuke T., Takayoshi M. Rheological Properties and Molecular Structure of Tunicate Cellulose in LiCl/1,3-Dimethyl-2-imidazolidinone. Biomacromolecules, 2004, 5(2): 422-432.

Wang Z. G., Yama T., Chang H. M., Matsumoto Y. Dissolution of Beech and Spruce Milled Woods in LiCl/DMSO. Journal of Agricultural & Food Chemistry, 2009, 57(14):6167–6170.

Olivier-Bourbigou H., Magna L., Morvan D. Ionic liquids and catalysis: Recent progress from knowledge to applications. Applied Catalysis A: General, 2010, 373(1-2): 1-56.

Swatloski R. P., Spear S. K., Hobrey J. D., Rogers R. D. Dissolution of cellulose with Ionic Liquids. Journal of the American Chemical Society, 2002, 124(18): 4974-4975.

Liu H. M., Sale K. L., Holmes B. M., Simmons Blake A., Seema S. Understanding the Interactions of Cellulose with Ionic Liquids: A Molecular Dynamics Study. Journal of Physical Chemistry B, 2010, 114(12): 4293–4301.

Li F., Chen Z. L. Research progress on dissolution and functional modification of cellulose in ionic liquids. Journal of Molecular Liquids, 2008, 142(1-3): 1-5.

Moulthrop J. S., Swatloski R. P., Moyna G., Rogers R. D. High-resolution 13C NMR studies of cellulose and cellulose oligomers inionic liquid solutions. Chemical Communications, 2005, 1557-1559.

Remsing R. D., Swatloski R. P., Rogers R. D., Moyna G. Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13C and 35/37Cl NMR relaxation study on model systems. Chemical Communication, 2006, 1271–1273.

Zhang J. M., Zhang H., Wu J., Zhang J., He J. S., Xia J. F. NMR spectroscopic studies of cellobiose solvation in EmimAc aimed to understand the dissolution mechanism of cellulose in ionic liquids. Physical Chemistry Chemical Physics, 2010, 12(8): 1941-1947.

Xu A. R., Wang J. J., Wang H. Y. Effects of anionic structure and lithium salts addition on the dissolution of cellulose in 1-butyl-3-methylimidazolium-based ionic liquid solvent systems. Green Chemistry, 2010, 12, 268-275.

Xu A. R., Zhang Y. B., Lu W. W., Yao K. S., Xu H. Effect of alkyl chain length in anion on dissolution of cellulose in 1-butyl-3-methylimidazolium carboxylate ionic liquids. Journal of Molecular Liquids, 2014, 197(9): 211–214.

Xiong B., Zhao P. P., Cai P., Zhang L. N., Hu K., Cheng G. Z. NMR spectroscopic studies on the mechanism of cellulose dissolution in alkali solutions. Cellulose, 2013, 20(2): 613–621.

Roberto R. Instantaneous dissolution of cellulose in organic electrolyte solutions. Chemical Communication, 2011, 47, 511–513.

Gericke M., Liebert T., Seoud O. A. E., Heinze T. Tailored Media for Homogeneous Cellulose Chemistry: Ionic Liquid/Co-Solvent Mixtures. Macromolecular materials and engineering, 2011, 296, 483–493.

Andanson J. M., Bordes E., Devémy J., Leroux F., Pádua A. A. H. Understanding the role of co-solvents in the dissolution of cellulose in ionic liquids. Green Chemistry, 2014, 16, 2528–2538.

Zhao Y. L., Liu X. M., Wang J. J., Zhang S. J. Insight into the Cosolvent Effect of Cellulose Dissolution inImidazolium-Based Ionic Liquid Systems. Journal of Physical Chemistry B, 2013, 117: 9042−9049.

Xu A. R., Cao L. L., Wang B. J. Facile cellulose dissolution without heating in [C4mim][CH3COO]/DMF solvent. Carbohydrate Polymers, 2015, 125, 249–254.

Zhou J. P., Zhang L. N. Solubility of cellulose in NaOH urea aqueous solution. Polymer Journal, 2000, 32(10): 866-870.

Cai J., Zhang L. N. Rapid Dissolution of Cellulose in LiOH/Urea and NaOH/Urea Aqueous Solutions. Macromolecular Bioscience, 2005, 5(6): 539–548.

Cai J., Liu Y. T., Zhang L. N. Dilute Solution Properties of Cellulose in LiOH/Urea Aqueous System. Journal of Polymer Science: Part B: Polymer Physics, 2006, 44(21): 3093–3101.

Li R., Wang S., Lu A., Zhang L. N. Dissolution of cellulose from different sources in an NaOH/urea aqueous system at low temperature. Cellulose, 2015, 22(1): 339–349.

Weng L. H., Zhang L. N., Ruan D., Shi L. H., Xu J. Thermal gelation of cellulose in a NaOH/thiourea aqueous solution. Langmuir, 2004, 20(6): 2086-2093.

Cai J., Zhang L. N., Chang C. Y. Hydrogen-bond-induced inclusion complex in aqueous cellulose /LiOH/urea solution at low temperature. Chem. Phys. Chem., 2007, 8(10): 1572-1579.

Cai J., Zhang L. N., Zhou J. P. Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: Structure and properties. Advanced Materials, 2007, 19(6): 821-825.

Cai J., Zhang L. N., Liu S. L. Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules, 2008, 41(23): 9345-9351.

Qin X. Z., Lu A., Cai J., Zhang L. N. Stability of inclusion complex formed by cellulose in NaOH/urea aqueous solution at low temperature. Carbohydrate Polymers, 2013, 92(2): 1315– 1320.

Xiong B., Zhao P. P., Hu K., Zhang L. N. Dissolution of cellulose in aqueous NaOH/urea solution: role of urea. Cellulose, 2014, 21(3): 1183–1192.

Jiang Z. W., Huang Y., Liu R. G., Zhang L. N. Intermolecular Interactions and 3D Structure in Cellulose−NaOH−Urea Aqueous System. The Journal of Physical Chemistry B, 2014, 118(34): 10250−10257.

Lue A., Liu Y. T., Zhang L. N., Potthas A. Light scattering study on the dynamic behaviour of cellulose inclusion complex in LiOH/urea aqueous solution. Polymer, 2011, 52(17): 3875-3864.

Lindman B., Karlstrom G., Stigsson L. On the mechanism of dissolution of cellulose. Journal of Molecular Liquids, 2010, 156(1): 76–81.

Medronho B., Romano A., Miguel M. G., Stigsson L., Lindman B. Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose, 2012, 19(3): 581–587.

Cai J., Liu Y. T., Zhang L. N. Dilute solution properties of cellulose in LiOH/urea aqueous system. Journal of Polymer Science: Part B: Polymer Physics, 2006, 44(21): 3093-3101.

Kihlman M., Medronho B. F., Romano A. L., Lindman B. Cellulose Dissolution in an Alkali Based Solvent: Influence of Additives and Pretreatments, Journal of Brazilian Chemical Society, 2013, 24(2): 295-303.

Yan L. F., Gao Z. J. Dissolving of cellulose in PEG/NaOH aqueous solution. Cellulose, 2008, 15(6): 789–796.




DOI: http://dx.doi.org/10.21967/jbb.v1i2.44

Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 Journal of Bioresources and Bioproducts