Fabrication and characterization of microfibrillated cellulose and collagen composite films

Wenhang Wang, Yabin Wang, Yanan Wang, Xiaowei Zhang, Xiao Wang, Guixian Gao


Microfibrillated cellulose (MFC)-collagen composite films were prepared with a dispersion of acid swollen collagen fibers and carboxylated MFC at different ratios in an alkaline homogenous system. The surface topographic results obtained from SEM analyses indicated that the MFC entangled uniformly with collagen in the film and formed a closely interwoven network to reinforce the film structure. However, the MFC addition decreased the smoothness and light transparency of the films due to the aggregation of MFC. Compared to the film prepared with pure collagen, the hybrid composite film showed a higher strength and Young’s modulus but lower elongation. The swelling of the composite film in water increased with the increase of the MFC ratio in the film matrix. DSC and TG analyses demonstrated that adding MFC to collagen benefited the thermal stability of the films, due to the conformational and crystal changes in the MFC/collagen structure indicated by the FT-IR and XRD results. The MFC/collagen composite film can potentially be used as an edible material in the food and packaging industry, in particular for meat products. 

Full Text:



Fernandes R., Couto Neto R., Paschoal C, Rohling J., Bezerra C. Collagen films from swim bladders: Preparation method and properties. Colloids and Surfaces B: Biointerfaces, 2008, 62(1): 17-21

Ricard-Blum S. The Collagen Family. Cold Spring Harbor Perspectives in Biology, 2011, 3(1)

Reiser K., McCormick R., Rucker R. Enzymatic and nonenzymatic cross-linking of collagen and elastin. The FASEB Journal, 1992, 6(7): 2439-2449

Oechsle AM., Wittmann X., Gibis M., Kohlus R., Weiss J. Collagen entanglement influenced by the addition of acids. European Polymer Journal, 2014, 58:144-156

Lee P., Lin R., Moon J., Lee LP. Microfluidic alignment of collagen fibers for in vitro cell culture. Biomedical microdevices, 2006, 8(1): 35-41

Tronci G., Russell SJ., Wood DJ. Photo-active collagen systems with controlled triple helix architecture. Journal of Materials Chemistry B, 2013, 1(30): 3705-3715

Gómez-Guillén M., Giménez B., López-Caballero M., Montero M. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocolloids, 2011, 25(8): 1813-1827

Lee CH., Singla A., Lee Y. Biomedical applications of collagen. International journal of pharmaceutics, 2001, 221(1): 1-22

Leikin S., Rau D., Parsegian V. Temperature-favoured assembly of collagen is driven by hydrophilic not hydrophobic interactions. Nature structural biology, 1995, 2(3): 205-210

Boström M., Tavares F., Finet S., Skouri-Panet F., Tardieu A., Ninham B. Why forces between proteins follow different Hofmeister series for pH above and below pI. Biophysical chemistry, 2005, 117(3): 217-224

Zhang Y., Cremer PS. Interactions between macromolecules and ions: the Hofmeister series. Current opinion in chemical biology 2006, 10(6): 658-663

Brinchi L., Cotana F., Fortunati E., Kenny J. Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydrate Polymers, 2013, 94(1): 154-169

Kalia S., Boufi S., Celli A., Kango S. Nanofibrillated cellulose: surface modification and potential applications. Colloid and Polymer Science, 2014, 292(1): 5-31

Siró I., Plackett D. Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose, 2010, 17(3): 459-494

Moon RJ., Martini A., Nairn J., Simonsen J., Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 2011, 40(7): 3941-3994

Azizi Samir MAS., Alloin F., Dufresne A. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules, 2005, 6(2): 612-626

Montanari S., Roumani M., Heux L., Vignon MR. Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules, 2005, 38(5): 1665-1671

Sim G., Alam MN., Godbout L., van de Ven T. Structure of swollen carboxylated cellulose fibers. Cellulose, 2014, 21(6): 4595-4606

Anumary A., Thanikaivelan P., Ashokkumar M., Kumar R, Sehgal P, Chandrasekaran B. Synthesis and characterization of hybrid biodegradable films from bovine hide collagen and cellulose derivatives for biomedical applications. Soft Materials, 2013, 11(2): 181-194

Li W., Guo R., Lan Y., Zhang Y., Xue W., Zhang Y. Preparation and properties of cellulose nanocrystals reinforced collagen composite films. Journal of Biomedical Materials Research Part A, 2014, 102(4): 1131-1139

Albu MG., Vuluga Z., Panaitescu DM., Vuluga DM., Căşărică A, Ghiurea M. Morphology and thermal stability of bacterial cellulose/collagen composites. Central European Journal of Chemistry, 2014, 12(9): 968-975

Saska S., Teixeira LN., de Oliveira PT., Gaspar AMM., Ribeiro SJL., Messaddeq Y., et al. Bacterial cellulose-collagen nanocomposite for bone tissue engineering. Journal of Materials Chemistry, 2012, 22(41):22102-22112

Steele TW., Huang CL., Nguyen E., Sarig U., Kumar S., Widjaja E., et al. Collagen–cellulose composite thin films that mimic soft-tissue and allow stem-cell orientation. Journal of Materials Science: Materials in Medicine, 2013, 24(8)

Pei Y., Yang J., Liu P., Xu M., Zhang X., Zhang L. Fabrication, properties and bioapplications of cellulose/collagen hydrolysate composite films. Carbohydrate Polymers, 2013, 92(2):1752-1760

Mathew AP., Oksman K., Pierron D., Harmad M-F. Crosslinked fibrous composites based on cellulose nanofibers and collagen with in situ pH induced fibrillation. Cellulose, 2012, 19(1):139-150

Fink HP., Weigel P., Purz HJ., Ganster J. Structure formation of regenerated cellulose materials from NMMO-solutions. Progress in Polymer Science, 2001, 26(9): 1473–1524

Adzaly NZ., Jackson A., Villalobos-Carvajal R., Kang I., Almenar E. Development of a novel sausage casing. Journal of Food Engineering, 2015, 152: 24-31

Jose MV., Thomas V., Dean DR., Nyairo E. Fabrication and characterization of aligned nanofibrous PLGA/Collagen blends as bone tissue scaffolds. Polymer, 2009, 50(15): 3778-3785

Ian C. McNeill, Livia Memetea, Musarrat H. Mohammed. Polychlorinated dibenzodioxins and dibenzofurans in PVC pyrolysis. Polymer Degradation and Stability, 1998:145-155.

Mitra T., Sailakshmi G., Gnanamani A., Raja ST., Thiruselvi T., Gowri VM., et al. Preparation and characterization of a thermostable and biodegradable biopolymers using natural cross-linker. Int. J. Biol. Macromol., 2011, 48(2):276-285

D.Achet and X. W. He. Determination of the renaturation level in gelatin films. Polymer, 1995, 36(4): 787-791

Mitra T., Sailakshmi G., Gnanamani A., Mandal AB. Preparation and characterization of malonic acid cross-linked chitosan and collagen 3D scaffolds: an approach on non-covalent interactions. J Mater Sci Mater Med, 2012, 23(5): 1309-1321

Wang W., Zhang Y., Ye R., Ni Y. Physical crosslinkings of edible collagen casing. Int. J. Biol. Macromol., 2015, 81: 920-925

Mitra T., Sailakshmi G., Gnanamani A., Mandal A. Exploring the dual role of α, ω-di-carboxylic acids in the preparation of collagen based biomaterial. Journal of Porous Materials, 2013, 20(4): 647-661

DOI: http://dx.doi.org/10.21967/jbb.v1i4.54


  • There are currently no refbacks.

Copyright (c) 2016 Wenhang Wang, Yabin Wang, Yanan Wang, Xiaowei Zhang, Xiao Wang, Guixian Gao

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.