Optimization of the extraction process for flavonoids from basil (Ocimum basilicum) using response surface methodology

Lei Wu, Ju-Wu Hua, Wei Xiong, Guan-Hua Wang, Lin Dai, Young-Soo Bae, Chuanling Si, Wei-Chen Hu


Basil (Ocimum basilicum), an edible and medicinal plant with high nutritional value and therapeutic efficacy, was used as a potential source of total flavonoids in this study. Heat reflux extractions were performed using aqueous ethanol. The optimized extraction conditions of total flavonoids from O. basilicum were determined by Box-Behnken design with response surface methodology. Response surface plots showed that the optional four independent variables significantly influenced the extraction yield of total flavonoids. The extraction parameters for the highest total flavonoids yield were optimized as: extraction temperature of 79.74 °C, ethanol concentration of 77.63%, ratio of liquid to material of 29.72:1 (mL/g), and extraction time of 2.06 h. The average yield of total flavonoids under above optimum parameters was 42.61 mg of rutin equivalents per g of extract dry matter, which was in good agreement with the predicted value of 40.23 mg/g. These optimized conditions could be useful for the extraction of flavonoids from O. basilicum.

Full Text:



McCutcheon, A. R., Ellis, S. M., Hancock, R. E. W., & Towers, G. H. N. (1992). Antibiotic screening of medicinal plants of the British Columbian native peoples. Journal of Ethnopharmacology, 37(3), 213-223.

Lin, Y. M., Flavin, M. T., Schure, R., Chen, F. C., Sidwell, R., Barnard, D. I., ... & Kern, E. R. (1999). Antiviral activities of biflavonoids. Planta medica, 65(02), 120-125.

Khanam, U. K. S., Oba, S., Yanase, E., & Murakami, Y. (2012). Phenolic acids, flavonoids and total antioxidant capacity of selected leafy vegetables. Journal of Functional Foods, 4(4), 979-987.

Itidel, C., Chokri, M., Mohamed, B., & Yosr, Z. (2013). Antioxidant activity, total phenolic and flavonoid content variation among Tunisian natural populations of Rhus tripartita (Ucria) Grande and Rhus pentaphylla Desf. Industrial Crops and Products, 51, 171-177.

Ravishankar, D., Rajora, A. K., Greco, F., & Osborn, H. M. (2013). Flavonoids as prospective compounds for anti-cancer therapy. The international journal of biochemistry & cell biology, 45(12), 2821-2831.

Coppin, J. P., Xu, Y., Chen, H., Pan, M. H., Ho, C. T., Juliani, R., & Wu, Q. (2013). Determination of flavonoids by LC/MS and anti-inflammatory activity in Moringa oleifera. Journal of Functional Foods, 5(4), 1892-1899.

Patel, V. R., Patel, P. R., & Kajal, S. S. (2010). Antioxidant activity of some selected medicinal plants in western region of India. Adv Biol Res, 4(1), 23-26.

Siddiqui, B. S., Bhatti, H. A., Begum, S., & Perwaiz, S. (2012). Evaluation of the antimycobacterium activity of the constituents from Ocimum basilicum against Mycobacterium tuberculosis. Journal of ethnopharmacology, 144(1), 220-222.

Mahajan, N., Rawal, S., Verma, M., Poddar, M., & Alok, S. (2013). A phytopharmacological overview on Ocimum species with special emphasis on Ocimum sanctum. Biomedicine & Preventive Nutrition, 3(2), 185-192.

Aguiyi, J. C., Obi, C. I., Gang, S. S., & Igweh, A. C. (2000). Hypoglycaemic activity of Ocimum gratissimum in rats. Fitoterapia, 71(4), 444-446.

Javanmardi, J., Stushnoff, C., Locke, E., & Vivanco, J. M. (2003). Antioxidant activity and total phenolic content of Iranian Ocimum accessions. Food chemistry, 83(4), 547-550.

Lee, S. J., Umano, K., Shibamoto, T., & Lee, K. G. (2005). Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties. Food Chemistry, 91(1), 131-137.

Amrani, S., Harnafi, H., Gadi, D., Mekhfi, H., Legssyer, A., Aziz, M., & Bosca, L. (2009). Vasorelaxant and anti-platelet aggregation effects of aqueous Ocimum basilicum extract. Journal of ethnopharmacology, 125(1), 157-162.

Runyoro, D., Ngassapa, O., Vagionas, K., Aligiannis, N., Graikou, K., & Chinou, I. (2010). Chemical composition and antimicrobial activity of the essential oils of four Ocimum species growing in Tanzania. Food chemistry, 119(1), 311-316.

Kwee, E. M., & Niemeyer, E. D. (2011). Variations in phenolic composition and antioxidant properties among 15 basil (Ocimum basilicum L.) cultivars. Food Chemistry, 128(4), 1044-1050.

Hussain, A. I., Anwar, F., Sherazi, S. T. H., & Przybylski, R. (2008). Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chemistry, 108(3), 986-995.

Bilal, A., Jahan, N., Ahmed, A., Bilal, S. N., & Habib, S. (2013). Antifertility Activity of Hydroalcoholic Extract of Ocimum Basilicum Linn. Leaves on Female Wistar Rats. Journal of reproduction and contraception, 24(1), 45-54.

Grayer, R. J., Kite, G. C., Veitch, N. C., Eckert, M. R., Marin, P. D., Senanayake, P., & Paton, A. J. (2002). Leaf flavonoid glycosides as chemosystematic characters in Ocimum. Biochemical systematics and ecology, 30(4), 327-342.

Grayer, R. J., Bryan, S. E., Veitch, N. C., Goldstone, F. J., Paton, A., & Wollenweber, E. (1996). External flavones in sweet basil, Ocimum basilicum, and related taxa. Phytochemistry, 43(5), 1041-1047.

Liu, Y., Wei, S., & Liao, M. (2013). Optimization of ultrasonic extraction of phenolic compounds from Euryale ferox seed shells using response surface methodology. Industrial Crops and products, 49, 837-843.

Guo, L., Zhu, W. C., Liu, Y. T., Wu, J. Y., Zheng, A. Q., & Liu, Y. L. (2013). Response surface optimized extraction of flavonoids from mimenghua and its antioxidant activities in vitro. Food Science and Biotechnology, 22(5), 1-8.

Govindarajan, M., Sivakumar, R., Rajeswary, M., & Yogalakshmi, K. (2013). Chemical composition and larvicidal activity of essential oil from Ocimum basilicum (L.) against Culex tritaeniorhynchus, Aedes albopictus and Anopheles subpictus (Diptera: Culicidae). Experimental parasitology, 134(1), 7-11.

Association of Official Analytical Chemists (AOAC), 1990. Official Methods of Analysis of the Association of the Official Analytical Chemists. 18th Edn., Washington DC, USA.

Shin, Y., Liu, R. H., Nock, J. F., Holliday, D., & Watkins, C. B. (2007). Temperature and relative humidity effects on quality, total ascorbic acid, phenolics and flavonoid concentrations, and antioxidant activity of strawberry. Postharvest Biology and Technology, 45(3), 349-357.

Alberti, A., Zielinski, A. A. F., Zardo, D. M., Demiate, I. M., Nogueira, A., & Mafra, L. I. (2014). Optimisation of the extraction of phenolic compounds from apples using response surface methodology. Food chemistry, 149, 151-158.

Augustin, J., Johnson, S. R., Teitzel, C., True, R. H., Hogan, J. M., Toma, R. B., & Deutsch, R. M. (1978). Changes in the nutrient composition of potatoes during home preparation: II. Vitamins. American potato journal, 55(12), 653-662.

Alinnor, I. J., & Akalezi, C. O. (2010). Proximate and mineral compositions of Dioscorea rotundata (white yam) and Colocasia esculenta (white cocoyam).Pakistan journal of nutrition, 9(10), 998-1001.

Sheng, Z. L., Wan, P. F., Dong, C. L., & Li, Y. H. (2013). Optimization of total flavonoids content extracted from Flos Populi using response surface methodology. Industrial Crops and Products, 43, 778-786.

Xu, Q., Shen, Y., Wang, H., Zhang, N., Xu, S., & Zhang, L. (2013). Application of response surface methodology to optimise extraction of flavonoids from fructus sophorae. Food chemistry, 138(4), 2122-2129.

DOI: http://dx.doi.org/10.21967/jbb.v1i4.61


  • There are currently no refbacks.

Copyright (c) 2016 Lei Wu, Ju-Wu Hua, Wei Xiong, Guan-Hua Wang, Lin Dai, Young-Soo Bae, Chuanling Si, Wei-Chen Hu

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.